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• Pre-trained foundation models show impressive zero- or few-shot ability

Background

Please identify the LOCATION 

entities in

“A Trump tower is located on the 5th 

avenue in New York”.

LOCATION entities:

- “Trump tower”;

- “5th avenue”;

- “New York”
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• For niche domains, such as materials science

• Training data are sparse   -->   foundation models fail to learn enough/precise knowledge

Background

Please identify the MATERIAL 

PROPERTIES in “The domain sizes 

estimated by crosssection profiles are 

about 10-20 nm”.

There is no property 

mentioned

Incorrect!
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Uncertainty Quantification Fine-Tuning

Address

There is no property 

mentioned

Model’s confidence to its answer:

0.01
Decision:

 Ignore

MATERIAL PROPERTIES 

entities:

- domain sizes

In-domain data
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Challenge: Discriminative Uncertainty Quantification

• Larger pre-trained foundation models are 
more prone to overfit

• Numerous UQ methods exist, each with 
different characteristics

Which/How to select?

• Discriminative : output space is a low-dimensional categorical/Gaussian distribution

• Text classification, material property prediction, etc.
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• Language model (LM): output response is a sequence of interdependent tokens.

• We are not equally interested in (the confidence of) every token in the response

• How to get the marginal probability of the answer tokens we are interested in?

𝑃(𝑥answer|𝑥instruction)

Challenge: LM Uncertainty Quantification

Q : 1 + 1 = ? A : A wise man once said “ 1 + 1 = 2 ”. The answer is \boxed{ 2 } . 

InterestedNot Interested

Instruction

Answer

6



Challenge: Impact of Label Quantify & Quality

• Model optimization requires large, in-domain labeled data

Model 
performance 
is impacted by 
training data 
size. Dataset: 
PolyIE. From 
Cheung et al. 
(2023) Model performance is impacted by training-test 

distribution shift. X-axis represents the 
difference between training and test distribution; 
larger number indicates greater distribution gap. 
From Li et al. (2024)
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Challenge: Data Collection is Hard

26 marks 

× 1,000 

images or 

more

Side face landmark annotation. 
From 3DMM-fitting GitHub repo.

PolyIE annotation example. From Cheung et al. (2023).

• Other Issues
• Costly if crowd-sourced, potentially low-quality
• Extended time-period
• …

Requires domain expertise

Tedious and repetitive
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Molecular Representation Models

• Pre-trained large molecular representation models achieve SOTA performance on a variety of 

property prediction tasks through fine-tuning.

QM9 ClinTox11



• It is desirable for predictions to be not only precise, but also well-calibrated

• Distinguish noisy predictions and improve model robustness.

• Applications: active learning; high throughput screening; wet-lab experimental design.

Uncertainty-Aware Property Prediction

Calibration Plot; from Medium post
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MUBen Components
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Models and UQ Methods

Molecular 

Representation 

Models

Uncertainty 

Quantification 

Methods
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Comparison of Backbone Models

• Uni-Mol performs the best for property prediction (ROC-AUC, RMSE and MAE), but tend to be over-

confident, yielding sub-optimal calibration (ECE and CE).

• GROVER is a safer choice when both prediction and UQ performance are required.

• Pre-trained models do not invariably surpass heuristic features, as shown in the comparison 

between DNN & ChemBERTa for regression.
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Comparison of UQ Methods

• Most UQ methods enhance both value prediction and uncertainty estimation.

• BBP and SGLD fail on classification but deliver the greatest improvement on regression.

• Deep Ensembles guarantees to improve the prediction and UQ results, but at a cost of heavy computational consumption.

• MC Dropout is cheap to adopt and theoretically does not risk model performance under any circumstances, making it a first-

pick when computation resource is limited.

• Temperature Scaling is also cheap for classification calibration, but it may fail when the held-out calibration dataset has a large 

distribution shift from the test set.
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Case Studies
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DNN on SIDER
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Uni-Mol on SIDER DNN on FreeSolv Uni-Mol on FreeSolv

RMSE MAE NLL CE

Quantum Mechanics

TorchME-NET Uni-Mol

RMSE MAE NLL CE

Physical Chemistry

TorchME-NET Uni-Mol

ROC ECE NLL BS

Biophysics

TorchME-NET Uni-Mol

ROC ECE NLL BS

Physiology

TorchME-NET Uni-Mol

The Mean Reciprocal Ranks (larger is better) of TorchMD-NET and Uni-Mol on datasets with different features. TorchMD-

NET is mainly pre-trained for predicting QM properties. 

Calibration plots for classification tasks. Absolute error v.s. predicted std on regression tasks.
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• Many applications; used everyday

• Tend to hallucinate

• Black-box

• How to know answer is accurate?

Large Language Models

Source: https://www.mindbowser.com/llm-
application-development/ 20

https://www.mindbowser.com/llm-application-development/
https://www.mindbowser.com/llm-application-development/


Language Model Uncertainty Quantification

1 + 1 = ?

3

𝑃 3 ⋅ = 41%

𝑃 2 ⋅ = 38%

𝑃 1 ⋅ = 20%

…
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Impact of the Reasoning Sequence

1 + 1 = ?

A wise man once said: “1 + 1 = 3 when it 

is not calculated correctly”. So, the 

answer is 3.

𝑃 3 reasoning sequence, ⋅ = 𝟗𝟗. 𝟗 %

𝑃 2 reasoning sequence, ⋅ = 0.09 %

𝑃 4 reasoning sequence, ⋅ = 10−6 %

…
22



Probability Aggregation Methods?

Joint probability of 
all response tokens

Average conditional probability 
of all response tokens

Joint probability of 
answer tokens
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𝑃(𝑥ans|𝑥instr) = ෍

𝑥cot

𝑃 𝑥ans 𝑥cot, 𝑥instr 𝑃(𝑥cot|𝑥instr)

• 𝑥ans: Answer tokens;     𝑥cot: reasoning tokens;     𝑥instr: instruction tokens

• But σ𝑥cot
⋅ is intractable

The Proper Way

A wise man once said …

The

There

Wise

woman

elder

…

monke

…
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• Not all tokens in the reasoning sequence contribute equally to the final answer

The Observation

Q : 1 + 1 = ? 
A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

Q : 1 + 1 = ? 
A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 
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Attention Backtracking

Q : 1 + 1 = ? 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

26



Attention Backtracking

Q : 1 + 1 = ? 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

Answer token(s)

0.7 0.2

Target tokens
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Attention Backtracking

Q : 1 + 1 = ? 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

Source tokens

0.48

0.4
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Attention Backtracking

Q : 1 + 1 = ? 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

Source tokens

0.2

0.8
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Attention Backtracking

Q : 1 + 1 = ? 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

Source tokens

0.48

0.2 0.4

0.8

• “.”:  0.4;
• “1”:  0.48 + 0.2 = 0.68;
• “2”:  0.8;
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Attention Backtracking

Q : 1 + 1 = ? 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

0.50.3
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Attention Backtracking

Q : 1 + 1 = ? 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

0.50.3

0.59

0.4

Stop Word
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Attention Chain

Q : 1 + 1 = ? 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

Attention Chain: [“2”, “1”, “2”, “answer”]
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• Attention chain is much shorter than the response sequence (~10%)
• May still bee too long for marginal calculation

• Not control over length

• Similarity filtering

Similarity Filtering

… “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . 

The answer is \boxed{ 2 } . 

Attention Chain (filtered): [“2”, “1”, “2”]
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Probability Thresholding

A wise man once said …

woman

elder
monke

…

Complexity: 𝒱 number of tokens

• Reasoning sequence is shorter, but how about the vocabulary space?

• Keep only candidate tokens with conditional probability higher than 0.01
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• Reasoning sequence is shorter, but how about the vocabulary space?

• Keep only candidate tokens with conditional probability higher than 0.01

Probability Thresholding

A wise man once said …

woman

elder
monke

…

A wise man once said …

Woman: 0.3

Elder: 0.02
Monke: 0.002

Other: < 0.01
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• Only substitute one token at  a time. Do not consider candidate token combinations.
• i.e., Hamming distance of the original response sequence and other sequences in the space is always 1.

• reasoning space can be generally reduced to a size of 6 – 7. 

Reasoning Space

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

A : A wise man once said “ 1 + 1 = 3 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . the

A : A wise man once said “ 1 + 1 = 1 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 1 . The answer is \boxed{ 2 } . 
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Calibration Plots

Average conditional probability 
of all response tokens

Joint probability of 
answer tokens

UQAC

Llama-3.1-8B-Instruct on MATH dataset; positive and negatives are balanced
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GSM8k MATH BBH

AUROC↑ ECE↓ AUROC↑ ECE↓ AUROC↑ ECE↓

Self-Consistency 66.4±1.9 28.9±0.8 79.5±1.0 15.8±0.8 79.5±1.0 31.6±0.7

Verbalized Uncertainty 54.9±0.5 42.9±0.2 57.4±0.7 45.1±0.2 58.2±1.2 39.7±0.3

UQAC 61.3±0.9 33.6±0.4 69.5±1.2 25.8±0.9 66.7±1.2 24.2±0.9

Comparison with Other Methods

0 10 20 30 40 50 60 70 80 90 100

Self Consistency

Verbalized Uncertainty

UQAC

Response Inference

Inference Time
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• Efficient
• Attention backtracking needs attention scores and last layer embeddings, which are already calculated for inference.

• Do not rely on external models.

• No recurrent generation; marginalization can be computed in parallel.

• Applicable
• Working on any Transformer-based white-box autoregressive LLMs.

• Calibrated
• Marginal probability ranging from 0 – 1; 

UQAC Characteristics
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Agenda

03 Information Extraction

Data-Efficient Model Learning 

CHMM in ACL 2021: https://aclanthology.org/2021.acl-long.482/ 
Wrench in NeurIPS 2021 Benchmark: https://openreview.net/forum?id=Q9SKS5k8io 
Sparse CHMM in KDD 2022: https://dl.acm.org/doi/10.1145/3534678.3539247 
G&O in ACL 2024 Findings (Short): https://aclanthology.org/2024.findings-acl.947/ 
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Named Entity Recognition (NER)

• Subtask of information extraction, seeks to find pre-defined named entities in a sequence

• Named entities: such as “person”, “location”, “organization”, etc.

• NER is usually formulated as a token classification task

• Assigns one label to each token in the sequence

Sentence: On the    15th    of  September ,  Tim  Cook announced that Apple wants to …

Labels:   O B-DATE I-DATE I-DATE I-DATE   O B-PER I-PER    O      O   B-ORG   O    O …

43



Weakly Supervised Named Entity Recognition

Fully Supervised Weakly Supervised
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Text Classification

A Principled Method with Graphical Models

𝑧

𝑥𝑘

𝐾

Naïve 

Bayes
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Text Classification Named Entity Recognition

A Principled Method with Graphical Models

𝑧

𝑥𝑘

𝐾

Naïve 

Bayes

𝑧(𝑡)

𝑥𝑘
(𝑡)

𝐾

𝑇

Hidden Markov 

Model

(HMM)
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HMM’s Disadvantage

• The transitions and emissions remain constant for all time-steps

• Does not directly consider token information

• Fails to properly incorporate the sentence & token semantics

𝑧(𝑡)

𝑥𝑘
(𝑡)

𝐾

𝑇
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Conditional Hidden Markov Model (CHMM)
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CHMM’s Disadvantage

• CHMM directly predicts all elements in the emission matrix

• Φ ∈ [0,1]𝐾×𝐿×𝐿, linear layer to predict emission:

ℝ𝑑model×𝐾⋅𝐿⋅𝐿 

• Large number of emission NN parameters

• High degrees of freedom

• More local optima

• Slow training & inference

• Solution: restrict the number of trainable emission parameters
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Sparse CHMM
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Expected Emission Matrix
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Emission Elements

• The emission: Φ𝑘,𝑖,𝑗 ≜ 𝑝(𝑥𝑘,𝑗
𝑡 = 1|𝑧 𝑡 = 𝑖)

• Diagonal elements

• the probabilities of LF 𝑘 observing the true label

• This can be regarded as LF 𝑘’s reliability score

• Φ𝑘,𝑙,𝑙 are large → LF 𝑘 is reliable; vice versa

• If we know how LF 𝑘 performes, can we construct 

the emission from it?
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Sparse CHMM

• Focus on predicting the emission diagonal, i.e., LF reliability

• Expand the diagonal to matrix with heuristics

• Reduced trainable parameters

• Faster convergence rate

• Better overall model performance
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• The models are trained on the training set (no labels) and tested on the test set (w/ gt, only for evaluation)

• The validation set is for early stopping and hyper-parameter fine-tuning

Main Results
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Reliability Prediction
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Case Study

• Sparse-CHMM focuses on the diagonal and emit-to-O at stage 1

• It then refines the emission by adding the prominent off-diagonal back to the matrix

• Sparse-CHMM fits the LF reliabilities well without using any clean labeled data.
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Zero-Shot IE with LLMs
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04 ELREA

In ICLR 2025: https://openreview.net/forum?id=l0gZS0sAlf 59
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• Complicated task w/ diverse training data, data points may lead to different update direction

• Resulting in under-optimized models

• Especially for smaller models

Motivation

Data 

Cluster 1

Backbone 

LLM

Data 

Cluster 2

Data 

Cluster 3

Data 

Cluster 4Data 

Cluster 5
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• Fit different expert models to different data clusters

Expert Training

Expert 1

Expert 2 Model Ensembles

Data 

Cluster 1

Backbone 

LLM

Data 

Cluster 2

Data 

Cluster 3

Data 

Cluster 4Data 

Cluster 5

Training Inference
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Data Clustering Expert Training Expert Ensembling

Ensembles of Low-Rank Expert Adapters (ELREA)
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Pipeline
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Fine-Tuning

Backbone 

LM ℳ

Baseline 

LoRA 

Tuning

Baseline LM 

ℳ + 𝒬base

Cluster-Specific 

Models ℳ + 𝒬𝑐 𝑐=1
𝐶  

Clustering

&

Cluster-Specific 

LoRA Tuning

: Fine-Tuning Instances 𝒙ft ∈ 𝒟ft

Fine-Tuning
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Baseline LoRA Tuning

Backbone LM 

ℳ

: Fine-Tuning Instances 𝒙ft ∈ 𝒟ft

The backbone LM (Gemma, GPT, etc.) may 

not initially fit our fine-tuning data very well 

or lack domain knowledge 

User: 1 + 1 = ?

System: A wise man once said: “…

User Instruction

System Response
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Baseline LoRA Tuning

Baseline LM 

ℳ + 𝒬base

: Fine-Tuning Instances 𝒙ft ∈ 𝒟ft

Fine-tune the backbone LM on all data to 

inject domain knowledge or to adjust model 

distribution

User: 1 + 1 = ?

System: A wise man once said: “…

User Instruction

System Response
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Fine-Tuning

Backbone 

LM ℳ

Baseline 

LoRA 

Tuning

Baseline LM 

ℳ + 𝒬base

Cluster-Specific 

Models ℳ + 𝒬𝑐 𝑐=1
𝐶  

Clustering

&

Cluster-Specific 

LoRA Tuning

: Fine-Tuning Instances 𝒙ft ∈ 𝒟ft

Fine-Tuning
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Data Clustering

• Remove system responses in the training data

Fine-Tuning 

Instances 𝒙ft User: 1 + 1 = ?

System: A wise man once said: “…

User Instruction

System Response
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• Remove system responses in the training data

Fine-Tuning User 

Instructions 𝒙ft,instr User: 1 + 1 = ?

User Instruction

System Response

Data Clustering
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Gradient Features

Fine-Tuning User 

Instructions 𝒙ft,instr

Unit Gradient 

Features 𝜹(𝒙ft,instr)

Gradient Feature Calculation

∇𝜽ℒ((ℳ + 𝒬base)(𝒙ft,instr))

Baseline Adapter

Baseline Adapter parameters 
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Clustering Gradient Features

Unit Gradient 

Features 𝜹(𝒙ft,instr)

𝒟2
𝒟3

𝒟1

Clusters

𝒟𝑐 𝑐=1
𝐶
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Fitting Expert Adapters

Baseline LM 

ℳ + 𝒬base

Continue fine-tuning adapter 𝒬base

ℳ + 𝒬2

ℳ + 𝒬1

ℳ + 𝒬3

72



Pipeline
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Inference

Weighted Sum     

& ArgMax

Inference

: Test Instances 𝒙test ∈ 𝒟test

Clustered Fine-Tuning 

Datasets 𝒟𝑐 𝑐=1
𝐶  

Adapter 

Influence 

Estimation

𝒬𝑏𝑎𝑠𝑒

𝒬1

𝒬2

𝒬3

…

0.6

0.4

0.08

0.25

Adapter Weights 

{𝑤base, 𝑤1, 𝑤2, … , 𝑤𝐶}

Response 

Generation

“The answer is ”

ℳ
+

𝒬
b

a
se

ℳ
+

𝒬
1

ℳ
+

𝒬
2

ℳ
+

𝒬
3

“The answer is A”

Equation

(10)
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• To select the most appropriate adapter(s) for the test data point

Adapter Influence Estimation (Routing)

Test Gradient Feature 

𝜹(𝒙test,instr)
Test Instances 

𝒟test

Gradient Feature Calculation

User: 1 + 2 = ? Explain.

User Instruction Test data points only contain 

user instructions
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Adapter Influence Estimation (Routing)

Test Gradient Feature 

𝜹(𝒙test,instr)
Cluster Weights

𝑤𝑐 𝑐=1
𝐶

0.4

0.08

0.25

𝒟2
𝒟3

𝒟1

Training Clusters

𝒟𝑐 𝑐=1
𝐶

Cosine Similarity

&

SoftMax
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Base Adapter

𝒬𝑏𝑎𝑠𝑒

𝒬1

𝒬2

𝒬3

…

0.6

0.4

0.08

0.25

Adapter Weights 

{𝑤base, 𝑤1, 𝑤2, … , 𝑤𝐶}
Cluster Weights

𝑤𝑐 𝑐=1
𝐶

0.4

0.08

0.25
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Response Generation as Ensembles

“The answer is ”

ℳ
+

𝒬
b

a
se

ℳ
+

𝒬
1

ℳ
+

𝒬
2

ℳ
+

𝒬
3
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Response Generation as Ensembles

“The answer is ”

ℳ
+

𝒬
b

a
se

ℳ
+

𝒬
1

ℳ
+

𝒬
2

ℳ
+

𝒬
3
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Response Generation as Ensembles

“The answer is ”

ℳ
+

𝒬
b

a
se

ℳ
+

𝒬
1

ℳ
+

𝒬
2

ℳ
+

𝒬
3

80



Response Generation as Ensembles

Weighted Sum     

& ArgMax

“The answer is ”

ℳ
+

𝒬
b

a
se

ℳ
+

𝒬
1

ℳ
+

𝒬
2

ℳ
+

𝒬
3

𝑤𝑏𝑎𝑠𝑒

𝑤1

𝑤2

𝑤3

…

0.6
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Response Generation as Ensembles
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Main Results: Mathematical Reasoning

ELREA consistently outperforms baseline methods with both LoRA ranks

Methods MATH GSM8k SVAMP MathQA Average (+Δ)

ℳ + 𝑄base 9.2 22.1 46.07 16.83 18.61

ℳ +  𝑄dataset 7.3 25.7 45 16.73 19.01 (+0.40)

MoE Routing 9.2 22.7 48.21 16.23 18.79 (+0.18)

MoE Merging 9.1 23.1 48.21 15.73 18.73 (+0.12)

MoLE 8.8 21.6 46.43 15.53 17.99 (-0.62)

LoRA Ensembles 9.3 24.7 47.5 16.73 19.55 (+0.94)

Self-Consistency 5.9 14.3 44.64 10.32 13.12 (-5.49)

Instruction Embedding 9.8 24.1 46.79 16.83 19.46 (+0.85)

ELREA 9.1 25.9 49.64 18.04 20.41 (+1.80)

Random Cluster 9.1 25.1 48.21 18.84 20.30 (+1.69)

Uniform Weights 9.6 25.2 47.5 18.04 20.16 (+1.55)
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Top-k Experts
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Conclusion
and

Future Works



• Characteristics of molecular foundation models; and how to select appropriate UQ methods

• How to more reliably estimate the confidence of LLM responses

• How to conduct information extraction without relying on manual labels

• How to improve model performance without additional training data

Summary
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• Tighter connection between UQ and model learning

Future Works
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Thanks for Attending!
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