Uncertainty-Aware and Data-Efficient Fine-Tuning and Application of Foundation Models

Yinghao Li, ML @ Georgia Tech; April 18, 2025

Committee:

Dr. Chao Zhang (advisor); Dr. Rampi Ramprasad (co-advisor); Dr. Tuo Zhao; Dr. Srijan Kumar; Dr. Victor Fung; Dr. Ali Torkamani;

Background

• Pre-trained foundation models show impressive zero- or few-shot ability

 \mathbb{S}

Please identify the LOCATION
entities in
"A Trump tower is located on the 5th
avenue in New York".

LOCATION entities:

- "Trump tower";
- "5th avenue";
- "New York"

Background

• For niche domains, such as materials science

• Training data are sparse --> foundation models <u>fail to learn enough/precise knowledge</u>

 \mathbb{S}

Please identify the MATERIAL PROPERTIES in "The **domain sizes** estimated by crosssection profiles are about 10-20 nm".

There is no property mentioned

Incorrect!

Address

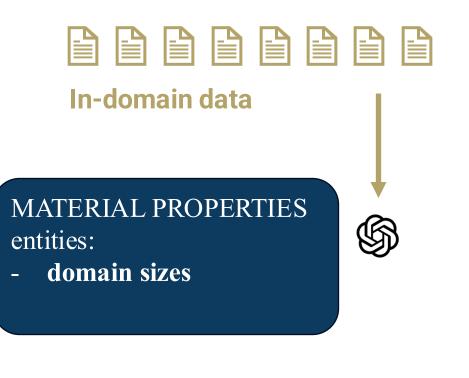
Uncertainty Quantification

There is no property mentioned

Model's confidence to its answer:					
0.01					
Decision:					

Ignore

Fine-Tuning



Challenge: Discriminative Uncertainty Quantification

• Discriminative : output space is a low-dimensional categorical/Gaussian distribution

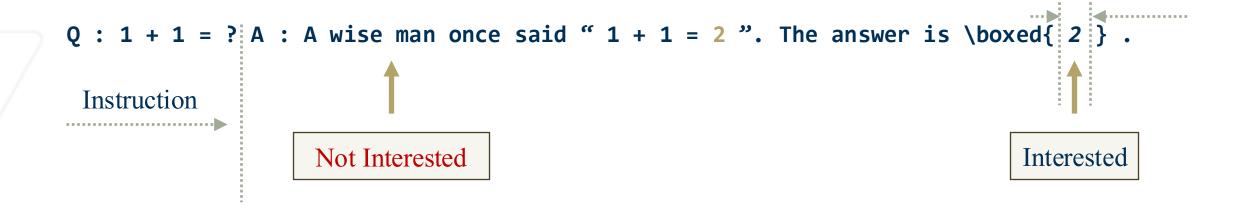
• Text classification, material property prediction, etc.

 Larger pre-trained foundation models are more prone to overfit Numerous UQ methods exist, each with <u>different characteristics</u>

Which/How to select?

Challenge: LM Uncertainty Quantification

- Language model (LM): output response is a <u>sequence</u> of <u>interdependent tokens</u>.
- We are not equally interested in (the confidence of) every token in the response



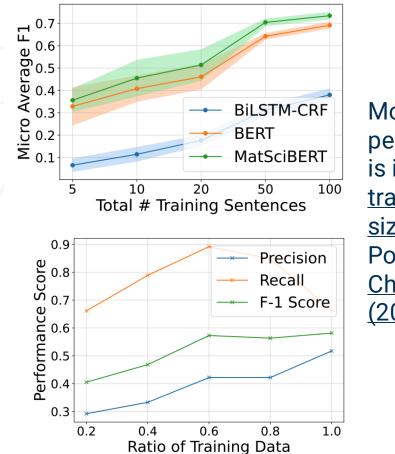
• How to get the marginal probability of the answer tokens we are interested in?

 $P(x_{\text{answer}}|x_{\text{instruction}})$

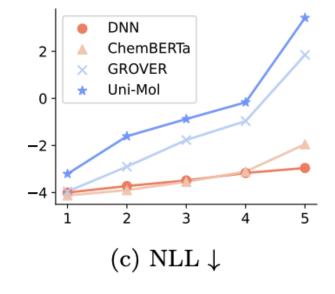
Answer

Challenge: Impact of Label Quantify & Quality

• Model optimization requires <u>large</u>, <u>in-domain</u> labeled data



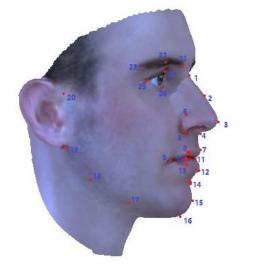
Model performance is impacted by <u>training data</u> <u>size</u>. Dataset: PolyIE. From <u>Cheung et al.</u> (2023)



Model performance is impacted by <u>training-test</u> <u>distribution shift</u>. X-axis represents the difference between training and test distribution; larger number indicates greater distribution gap. From <u>Li et al. (2024)</u>

Challenge: Data Collection is Hard

Tedious and repetitive



26 marks × 1,000 images or more

Side face landmark annotation. From <u>3DMM-fitting GitHub repo</u>.

Annotations: Value-Condition Value-Condition [1] For PBDTTT-TIPS:PC₇₁BM (1:1, w/w) blend, the films Material Condition exhibit a typical cluster structure with many aggregated Material-Property Material-Property domains and a root-mean-square (rms) roughness of ↓ Property-Value Property 1.472 nm. [2] The domain sizes estimated by cross-Value Property **Property-Value** section profiles are about 10-20 nm Value **Intra-Sentence Relation:**

<PBDTTT-TIPS:PC₇₁BM, root-mean-square (rms) roughness, 1.472 nm, 1:1 w/w>

Inter-Sentence Relation: <PBDTTT-TIPS:PC₇₁BM, domain sizes, 10-20 nm, 1:1 w/w>

PolyIE annotation example. From Cheung et al. (2023).

Requires domain expertise

Other Issues

- Costly if crowd-sourced, potentially low-quality
- Extended time-period

Reliable Uncertainty Quantification

 $01 \, \mathrm{MUBen}$

02 UQAC

Data-Efficient Model Learning

03 Information Extraction

 $04 \, \text{ELREA}$

Reliable Uncertainty Quantification

$01 \,\, { m MUBen}$

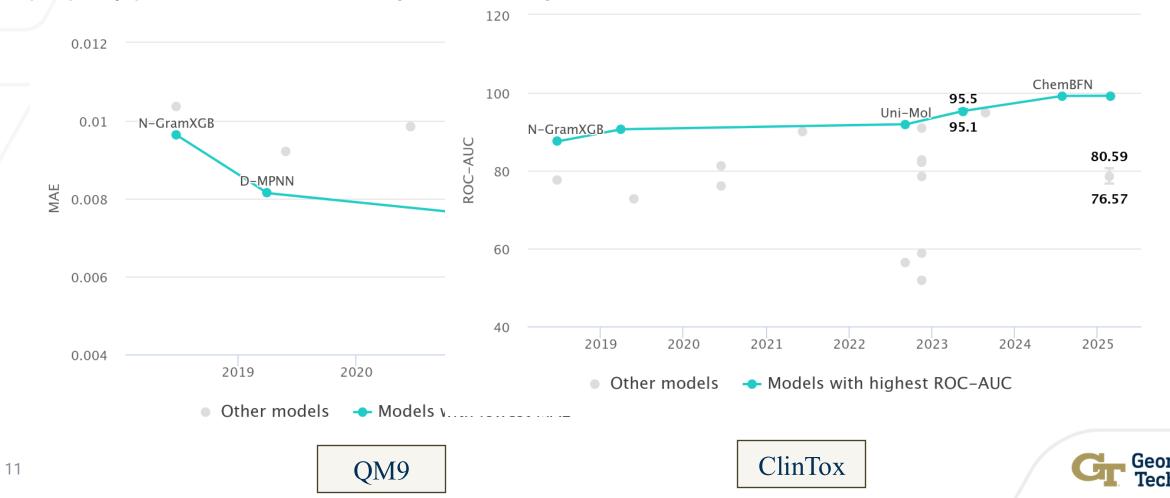
Data-Efficient Model Learning

03 Information Extraction

In TMLR: <u>https://openreview.net/forum?id=qYceFeHgm4</u>

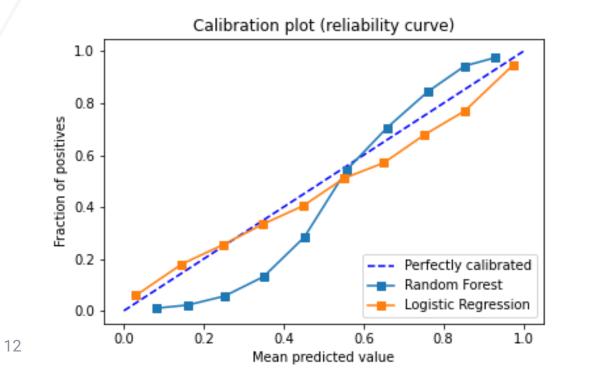
Molecular Representation Models

• Pre-trained large molecular representation models achieve SOTA performance on a variety of property prediction tasks through fine-tuning.



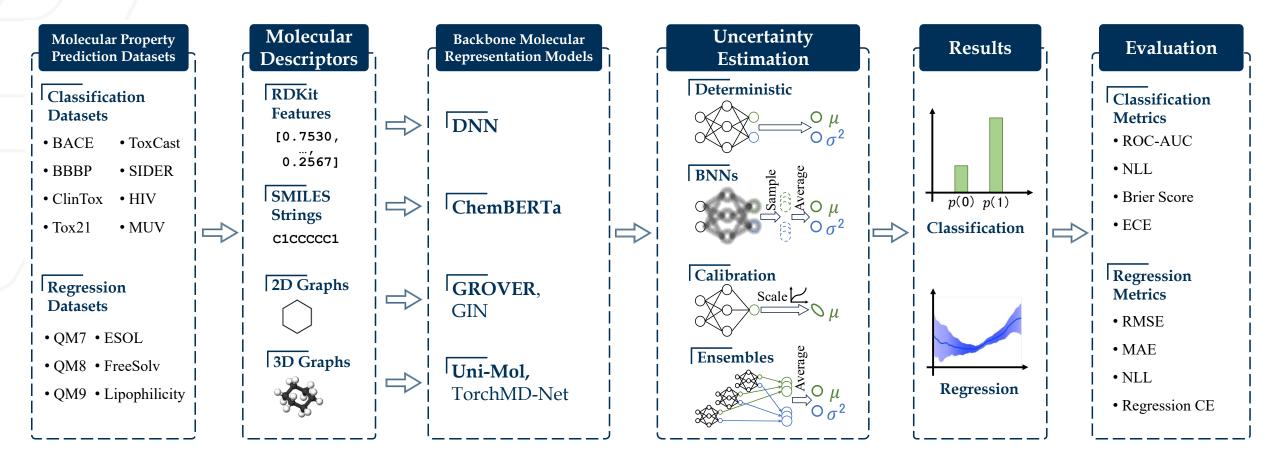
Uncertainty-Aware Property Prediction

- It is desirable for predictions to be not only precise, but also *well-calibrated*
- Distinguish noisy predictions and improve model robustness.
- <u>Applications</u>: active learning; high throughput screening; wet-lab experimental design.



Calibration Plot; from Medium post

MUBen Components



Models and UQ Methods

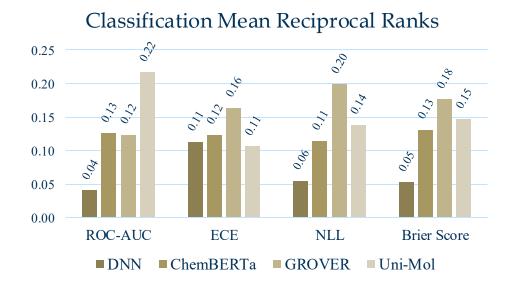
	Model	# Parameters (M)	Average Time per Training Step $(ms)^{(a)}$
-	DNN	0.158	5.39
	ChemBERTa	3.43	30.18
	GROVER	48.71	334.47
	Uni-Mol	47.59	392.55
	TorchMD-NET	7.23	217.29
	GIN	0.26	7.21

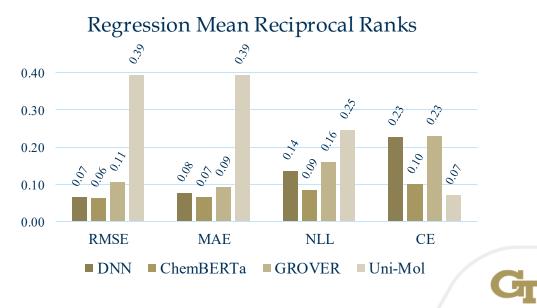
Molecular Representation Models

	UQ Method	Training Starting Checkpoint	Additional Cost ^(a)
	Deterministic	-	0
Uncertainty	Temperature Focal Loss	from fine-tuned backbone from scratch	$(T_{ m infer} + T_{ m train-FFN}) imes M_{ m train-extra} \ T_{ m train} imes M_{ m train}$
Quantification	MC Dropout SWAG	no training from fine-tuned backbone	$T_{ m infer} imes M_{ m infer}$ $T_{ m train} imes M_{ m train-extra} + T_{ m infer} imes M_{ m infer}$
Methods	BBP SGLD	from scratch from scratch	$T_{\text{train}} \times M_{\text{train}} + T_{\text{infer}} \times M_{\text{infer}}$ $T_{\text{train}} \times (M_{\text{train}} + M_{\text{train-extra}}) + T_{\text{infer}} \times M_{\text{infer}}$
	Ensembles	from scratch	$T_{ m train} imes M_{ m train} imes (N_{ m ensembles} - 1)$

Comparison of Backbone Models

- Uni-Mol performs the best for property prediction (ROC-AUC, RMSE and MAE), but tend to be overconfident, yielding sub-optimal calibration (ECE and CE).
- GROVER is a safer choice when both prediction and UQ performance are required.
- Pre-trained models do not invariably surpass heuristic features, as shown in the comparison between DNN & ChemBERTa for regression.

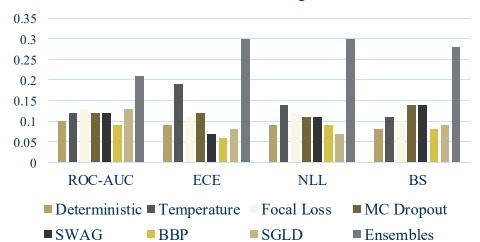




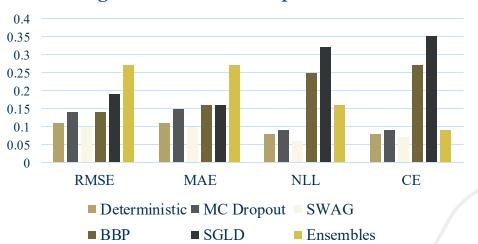
15

Comparison of UQ Methods

- / Most UQ methods enhance both value prediction and uncertainty estimation.
- <u>BBP</u> and <u>SGLD</u> fail on classification but deliver the greatest improvement on regression.
- <u>Deep Ensembles</u> guarantees to improve the prediction and UQ results, but at a cost of heavy computational consumption.
- <u>MC Dropout</u> is cheap to adopt and theoretically does not risk model performance under any circumstances, making it a firstpick when computation resource is limited.
- <u>Temperature Scaling</u> is also cheap for classification calibration, but it may fail when the held-out calibration dataset has a large distribution shift from the test set.

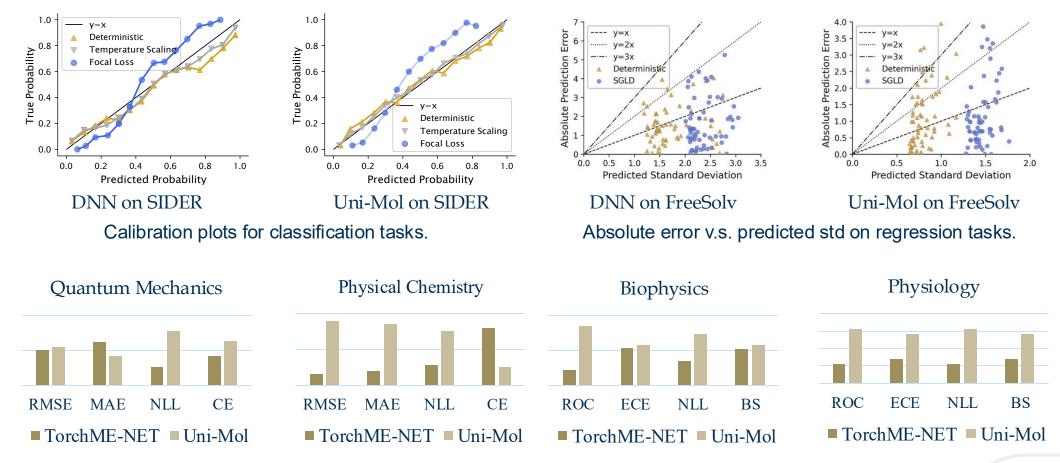


Classification Mean Reciprocal Ranks



Regression Mean Reciprocal Ranks

Case Studies



The Mean Reciprocal Ranks (larger is better) of TorchMD-NET and Uni-Mol on datasets with different features. TorchMD-NET is mainly pre-trained for predicting QM properties.

Reliable Uncertainty Quantification

 $01 \, \mathrm{MUBen}$

02 UQAC

Data-Efficient Model Learning

03 Information Extraction

 $04 \, \text{ELREA}$

Reliable Uncertainty Quantification

03 Information Extraction

02 UQAC

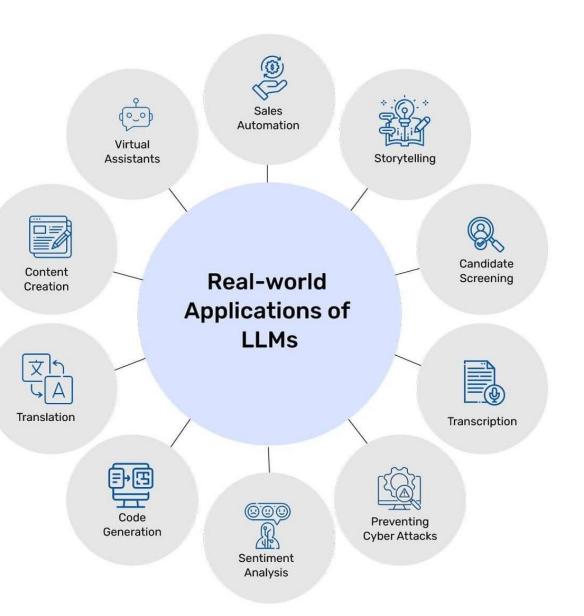
In Submission of COLM 2025: https://arxiv.org/abs/2503.19168

Large Language Models

Many applications; used everyday

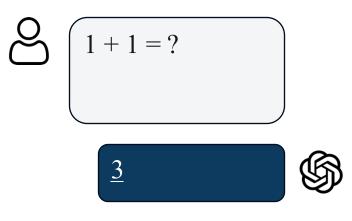
- Tend to hallucinate
- Black-box

• How to know answer is accurate?



Source: https://www.mindbowser.com/llm-application-development/

Language Model Uncertainty Quantification



$P(3 \cdot)=41\%$
$P(2 \cdot)=38\%$
$P(1 \cdot)=20\%$

...

Impact of the Reasoning Sequence

$$\bigcirc 1+1=?$$

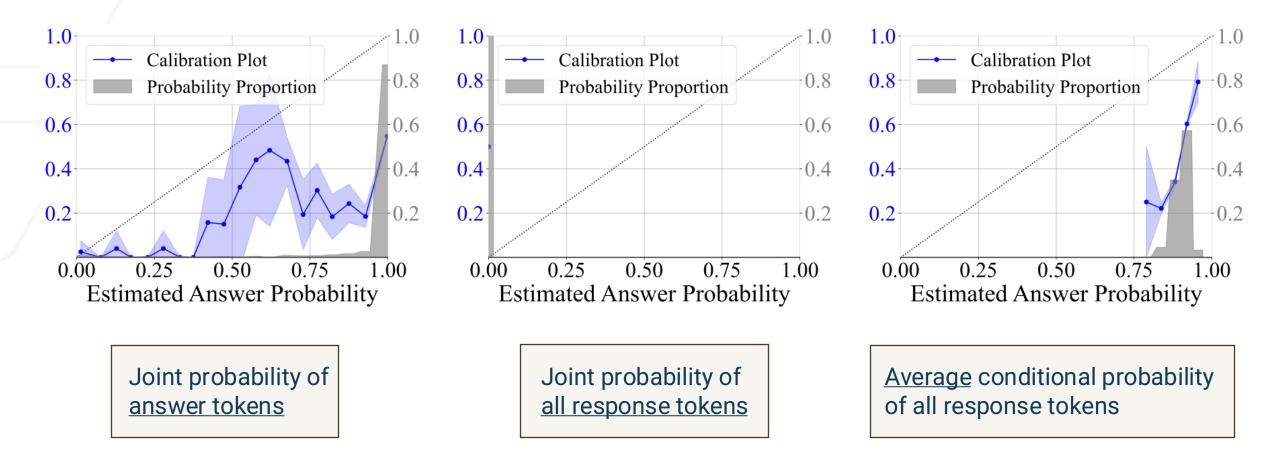
A wise man once said: "1 + 1 = 3 when it is not calculated correctly". So, the answer is <u>3</u>.

 $P(3|\text{reasoning sequence, } \cdot) = 99.9\%$ $P(2|\text{reasoning sequence, } \cdot) = 0.09\%$ $P(4|\text{reasoning sequence, } \cdot) = 10^{-6}\%$

 (\mathfrak{G})

....

Probability Aggregation Methods?



The Proper Way

$$P(x_{\text{ans}}|x_{\text{instr}}) = \sum_{x_{\text{cot}}} P(x_{\text{ans}}|x_{\text{cot}}, x_{\text{instr}}) P(x_{\text{cot}}|x_{\text{instr}})$$

• x_{ans} : Answer tokens; x_{cot} : reasoning tokens; x_{instr} : instruction tokens

• But $\sum_{x_{cot}}$ is intractable

A wis	e man once said …
The	woman
There	elder
Wise	monke
***	***

The Observation

• Not all tokens in the reasoning sequence contribute equally to the final answer

Q:
$$1 + 1 = ?$$

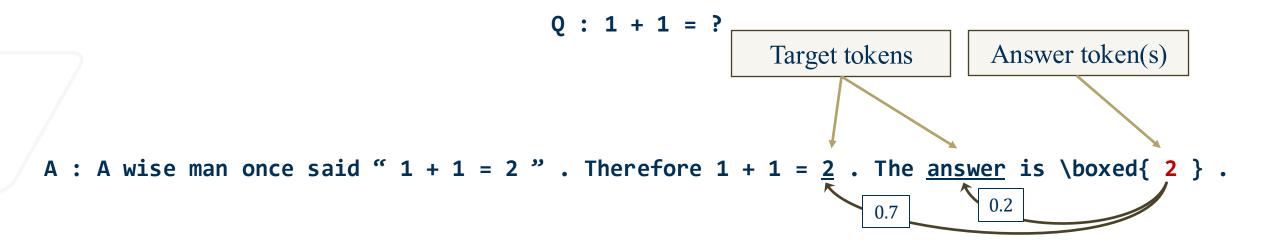
A : A wise man once said " $1 + 1 = 2$ " . Therefore $1 + 1 = 2$. The answer is \boxed{ 2 } .
Q: $1 + 1 = ?$
A : A wise man once said " $1 + 1 = 2$ " . Therefore $1 + 1 = 2$. The answer is \boxed{ 2 } .

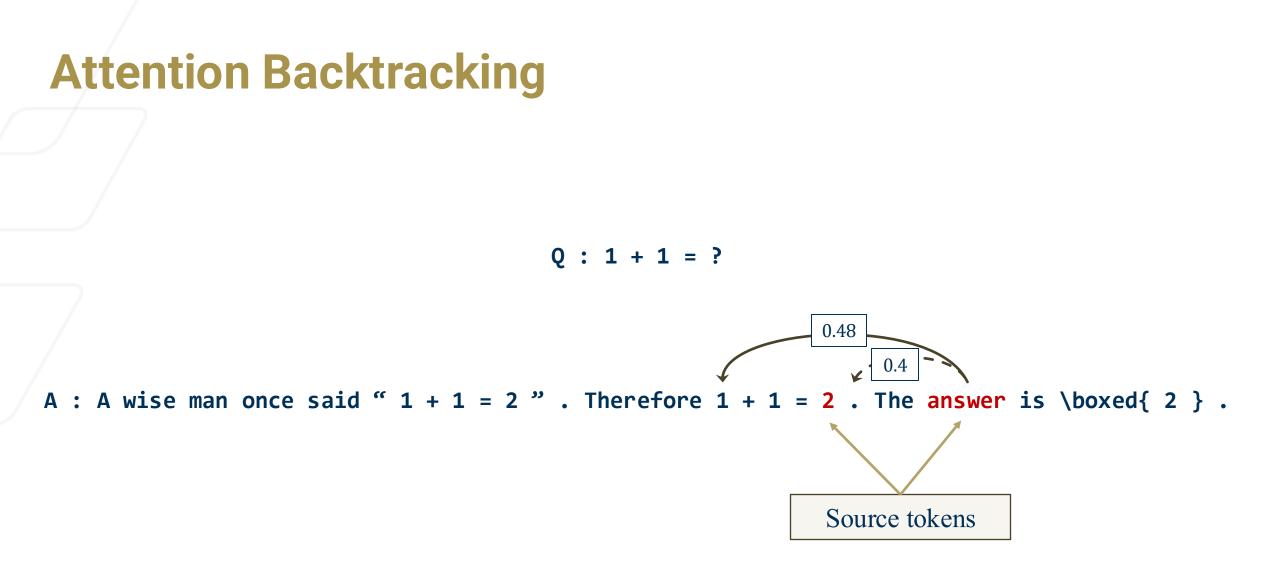
Attention Backtracking

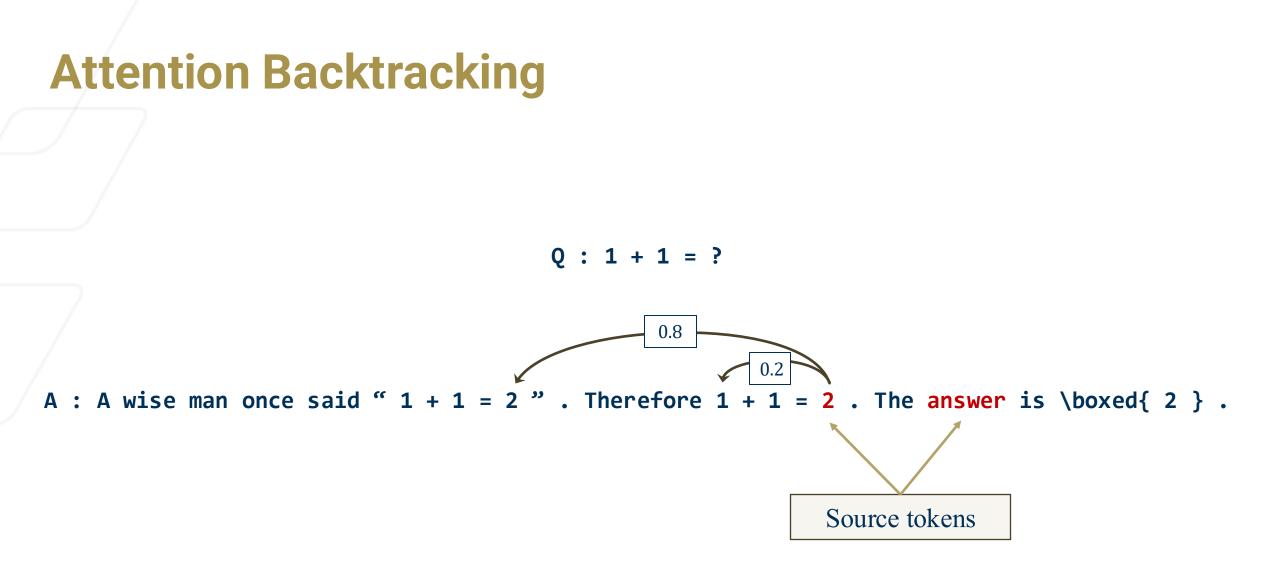
Q : 1 + 1 = ?

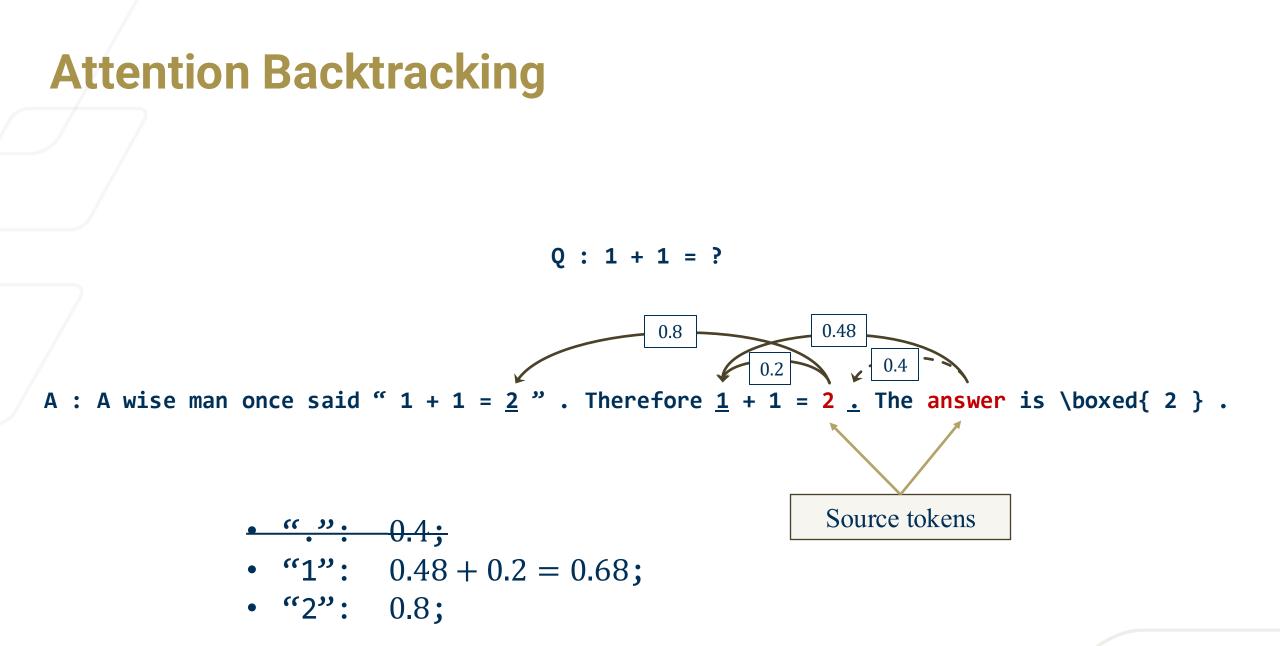
A : A wise man once said "1 + 1 = 2". Therefore 1 + 1 = 2. The answer is \boxed{ 2}.

Attention Backtracking

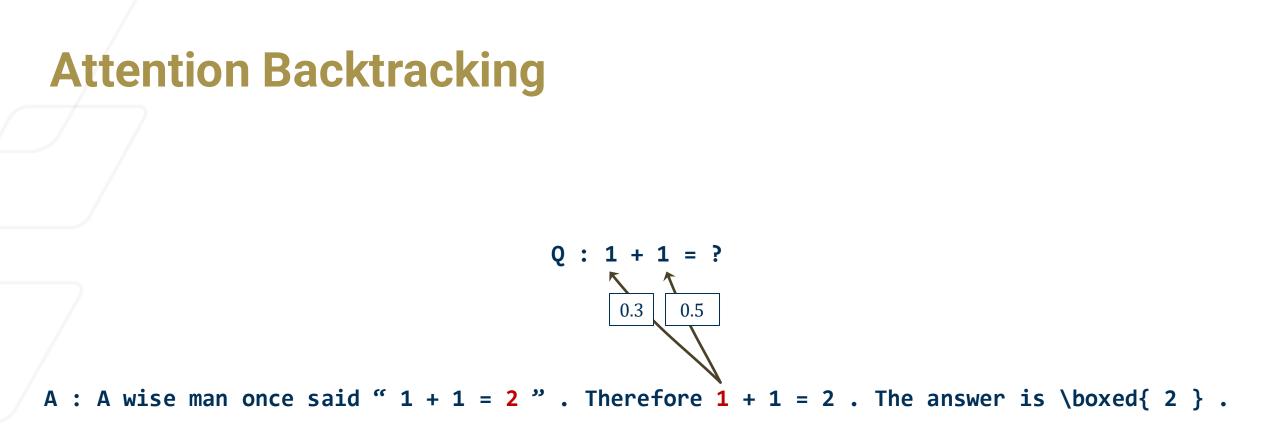


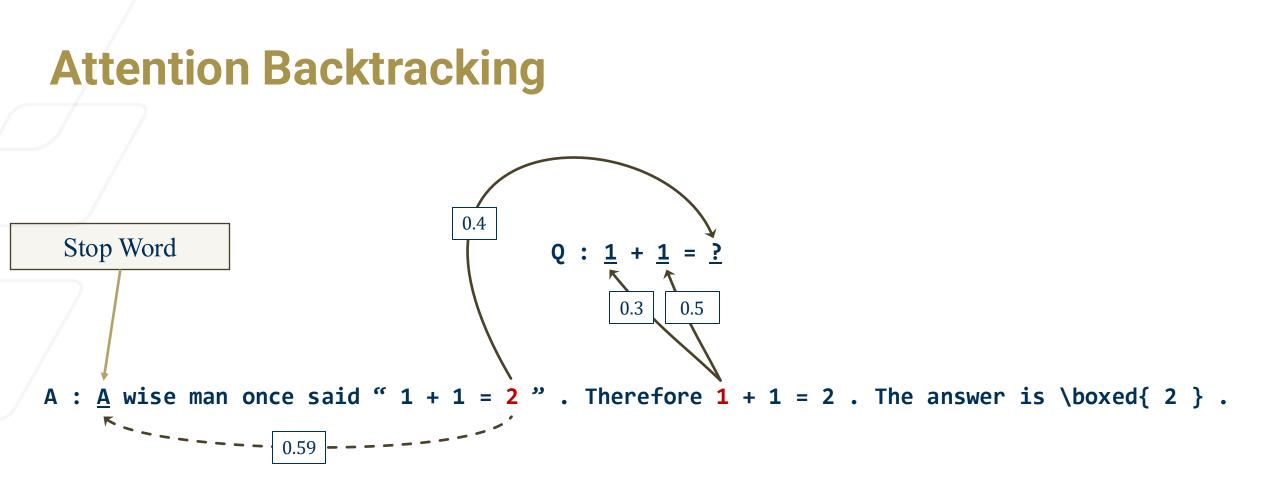


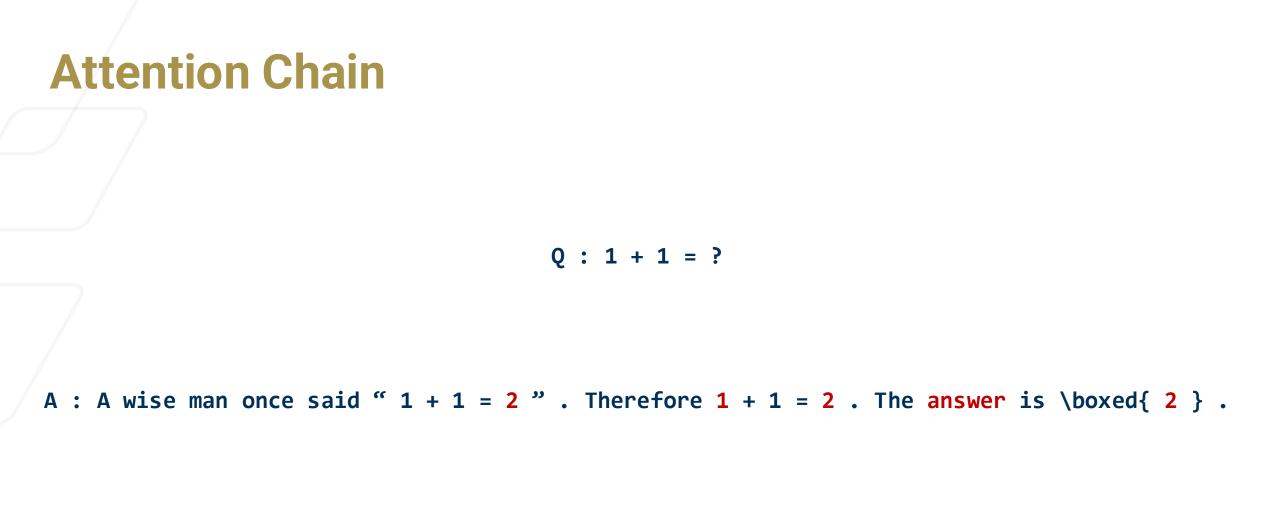




Georgia



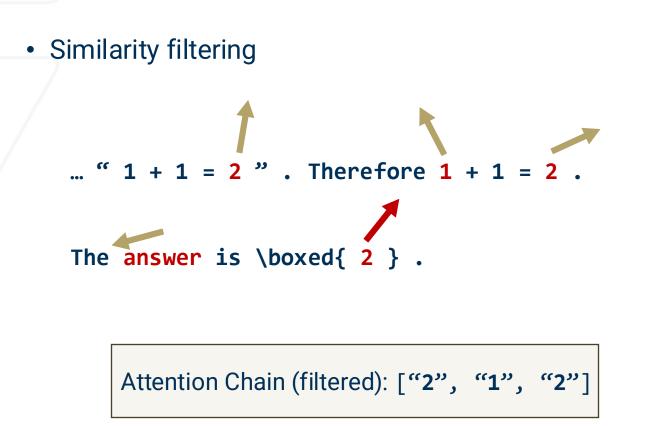


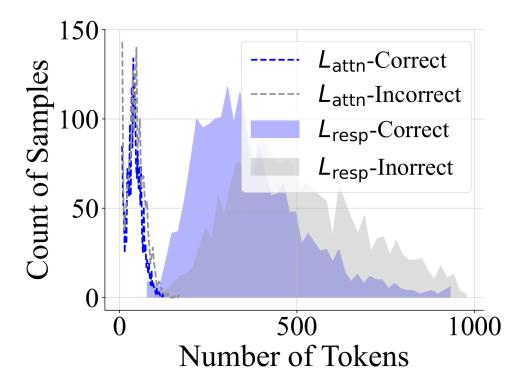


Attention Chain: ["2", "1", "2", "answer"]

Similarity Filtering

- Attention chain is much shorter than the response sequence ($\sim 10\%$)
 - May still bee too long for marginal calculation
 - Not control over length





Probability Thresholding

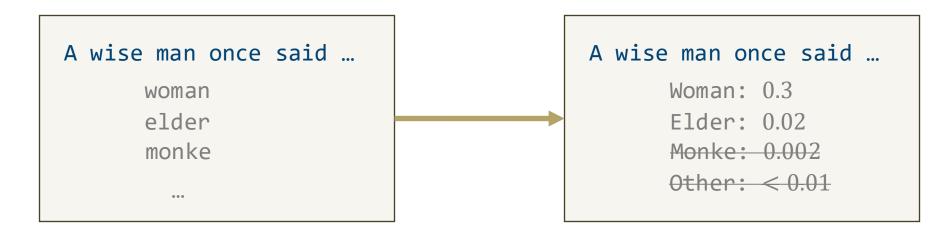
• Reasoning sequence is shorter, but how about the vocabulary space?

A wise man once sat	id
woman	
elder	
monke	
000	

Complexity: $|\mathcal{V}|^{number of tokens}$

Probability Thresholding

• Reasoning sequence is shorter, but how about the vocabulary space?



• Keep only candidate tokens with conditional probability higher than 0.01

Reasoning Space

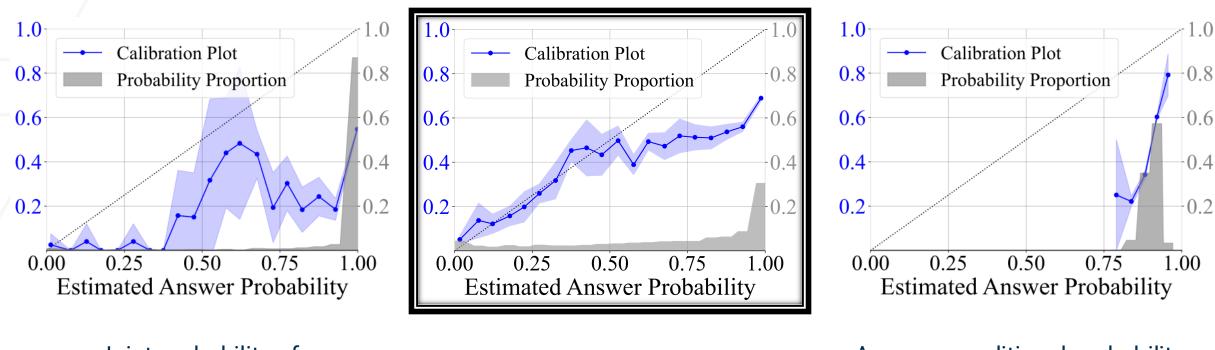
• Only substitute one token at a time. Do not consider candidate token combinations.

- •/ i.e., Hamming distance of the original response sequence and other sequences in the space is always 1.
- reasoning space can be generally <u>reduced to a size of 6 − 7</u>.

A : A wise man once said " 1 + 1 = 2 ". Therefore 1 + 1 = 2. The answer is \boxed{ 2 }. A : A wise man once said " 1 + 1 = 3 ". Therefore 1 + 1 = 2. The answer is \boxed{ 2 }. A : A wise man once said " 1 + 1 = 2 ". Therefore <u>the</u> + 1 = 2. The answer is \boxed{ 2 }. A : A wise man once said " 1 + 1 = 1 ". Therefore 1 + 1 = 2. The answer is \boxed{ 2 }. A : A wise man once said " 1 + 1 = 1 ". Therefore 1 + 1 = 2. The answer is \boxed{ 2 }. A : A wise man once said " 1 + 1 = 2 ". Therefore 1 + 1 = 2. The answer is \boxed{ 2 }.

Calibration Plots

UQAC



Joint probability of answer tokens <u>Average</u> conditional probability of all response tokens

Llama-3.1-8B-Instruct on MATH dataset; positive and negatives are balanced

38

Comparison with Other Methods

		GSM8k		MATH		BBH	
		AUROC ↑	ECE↓	AUROC ↑	ECE↓	AUROC ↑	ECE↓
	Self-Consistency	66.4±1.9	28.9±0.8	79.5±1.0	15.8±0.8	79.5±1.0	31.6±0.7
	Verbalized Uncertainty	54.9±0.5	42.9±0.2	57.4±0.7	45.1±0.2	58.2±1.2	39.7±0.3
	UQAC	61.3±0.9	33.6±0.4	69.5±1.2	25.8±0.9	66.7±1.2	24.2±0.9
Response Inference UQAC Verbalized Uncertainty							
	Se	lf Consistency					
39			0 10 20	30 40 50 Inference	60 70 80 Fime	90 100	Geo Tec

UQAC Characteristics

- Efficient
 - Attention backtracking needs attention scores and last layer embeddings, which are already calculated for inference.
 - Do not rely on external models.
 - No recurrent generation; marginalization can be computed in parallel.
- Applicable
 - Working on any Transformer-based white-box autoregressive LLMs.
- Calibrated
 - Marginal probability ranging from 0 1;

Reliable Uncertainty Quantification

 $01 \, \mathrm{MUBen}$

02 UQAC

Data-Efficient Model Learning

03 Information Extraction

 $04 \, \text{ELREA}$

Agenda

Reliable Uncertainty Quantification

Data-Efficient Model Learning

03 Information Extraction

CHMM in ACL 2021: https://aclanthology.org/2021.acl-long.482/ Wrench in NeurIPS 2021 Benchmark: https://openreview.net/forum?id=Q9SKS5k8io Sparse CHMM in KDD 2022: https://dl.acm.org/doi/10.1145/3534678.3539247 G&O in ACL 2024 Findings (Short): https://aclanthology.org/2024.findings-acl.947/

Named Entity Recognition (NER)

• Subtask of information extraction, seeks to find <u>pre-defined named entities</u> in a sequence

• Named entities: such as "person", "location", "organization", etc.

On	the 15th c	of September DAT	=,	Tim Cook	PERSON	announced that	
Apple org wants to acqui			ABC Group ORG from			New York GPE	
for	1 billion de	ollars MONEY					

- NER is usually formulated as a <u>token classification</u> task
 - Assigns one label to each token in the sequence

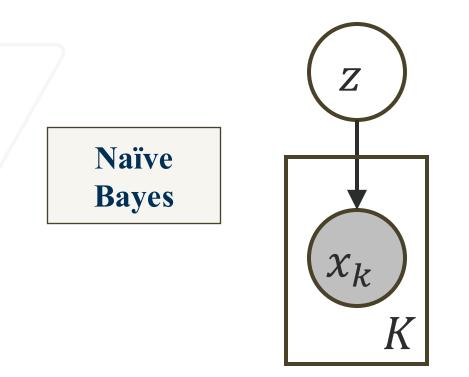
Sentence:On the15thofSeptember,TimCook announced that Apple wants to ...Labels:OB-DATEI-DATEI-DATEOB-PERI-PEROOB-ORGOO...

Weakly Supervised Named Entity Recognition **Fully Supervised** Weakly Supervised Rockefeller Center in York Rockefeller Center New in New York was... was... **LF 1 B-PER B-LOC** I-LOC O... Ο 0 **LF 2** 0 **B-LOC** I-LOC 0 **B-LOC** O... Target **B-LOC** I-LOC 0 **B-LOC** I-LOC O... Rockefeller Center in York New Rockefeller Center in York was... New was... Target **B-LOC** I-LOC 0 **B-LOC** I-LOC O... Target B-LOC I-LOC 0 **B-LOC** I-LOC O...

Georgia

A Principled Method with Graphical Models

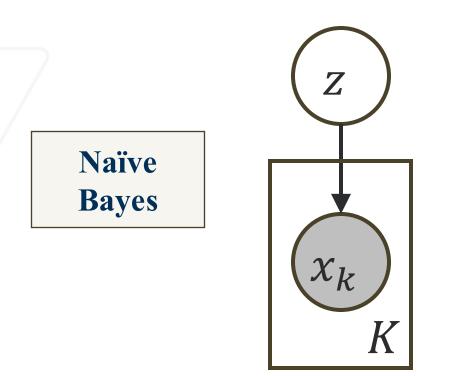
Text Classification

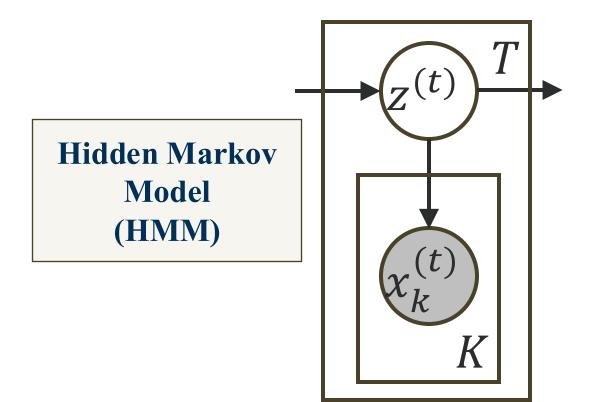


A Principled Method with Graphical Models

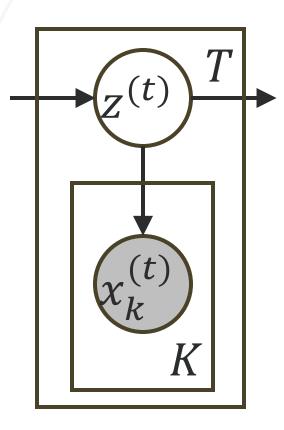
Text Classification

Named Entity Recognition





HMM's Disadvantage

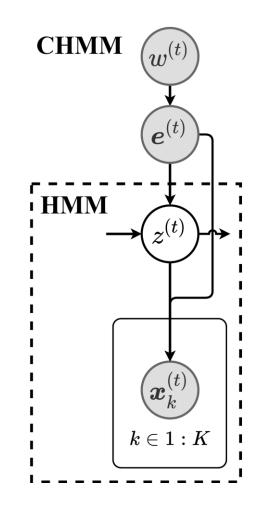


- The transitions and emissions remain constant for all time-steps
- Does not directly consider token information

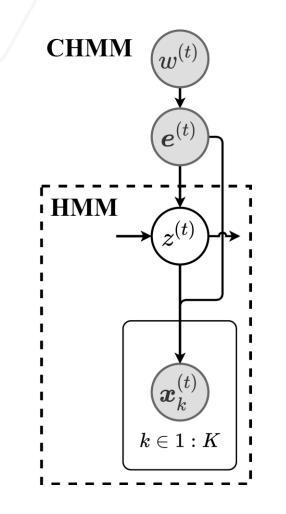
• Fails to properly incorporate the sentence & token semantics

	The house of	Barack Obama	
Ideal:	P(PER others) = 0.1	P(PER others) = 0.8	Different \checkmark
HMM:	P(PER others) = 0.2	P(PER others) = 0.2	Same 🗙

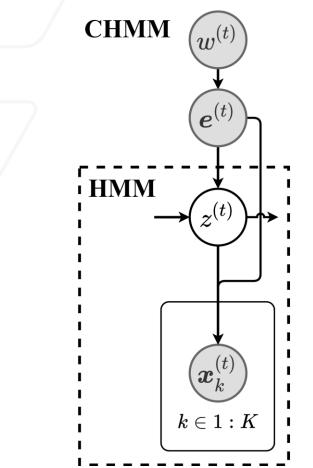
Conditional Hidden Markov Model (CHMM)



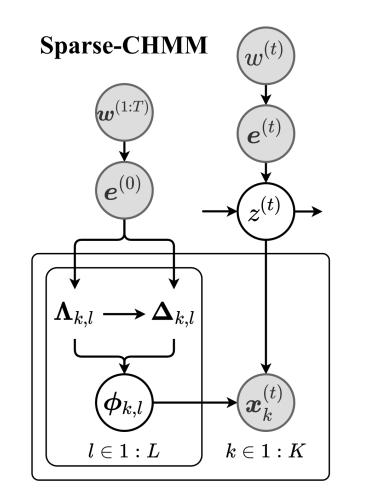
CHMM's Disadvantage



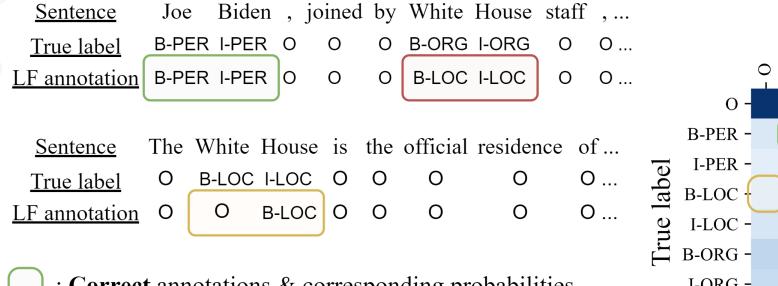
- CHMM <u>directly predicts all elements</u> in the emission matrix
 - $\Phi \in [0,1]^{K \times L \times L}$, linear layer to predict emission: $\mathbb{R}^{d_{model} \times K \cdot L \cdot L}$
- Large number of emission NN parameters
 - High degrees of freedom
 - More local optima
 - Slow training & inference
- Solution: restrict the number of trainable emission parameters



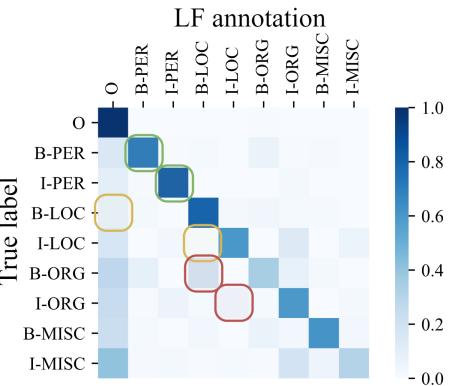
Sparse CHMM



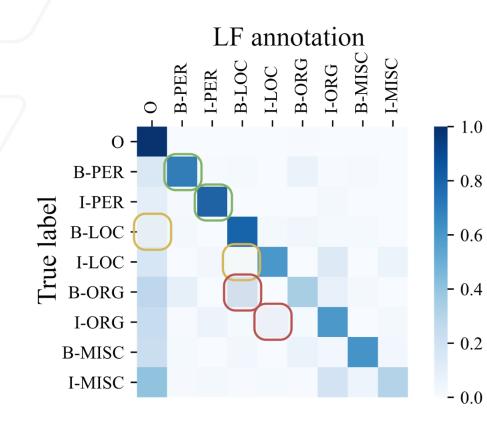
Expected Emission Matrix



: Correct annotations & corresponding probabilities
 : Incorrect annotations & corresponding probabilities



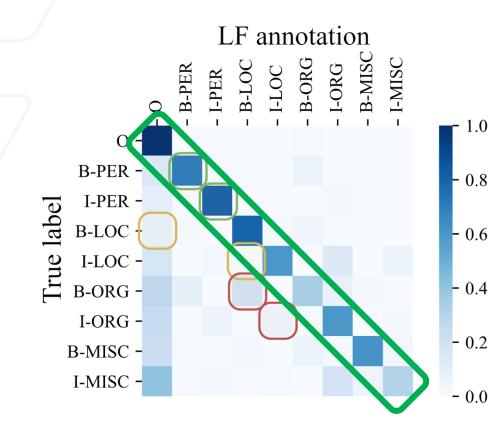
Emission Elements



- The emission: $\Phi_{k,i,j} \triangleq p(x_{k,j}^{(t)} = 1 | z^{(t)} = i)$
- Diagonal elements 🗌
 - the probabilities of LF k observing the true label
 - This can be regarded as LF k's reliability score
 - $\Phi_{k,l,l}$ are large \rightarrow LF k is reliable; vice versa

 If we know how LF k performes, can we construct the emission from it?

Sparse CHMM



- Focus on predicting the emission diagonal, *i.e.*, LF reliability
- Expand the diagonal to matrix with heuristics

- Reduced trainable parameters
- Faster convergence rate
- Better overall model performance

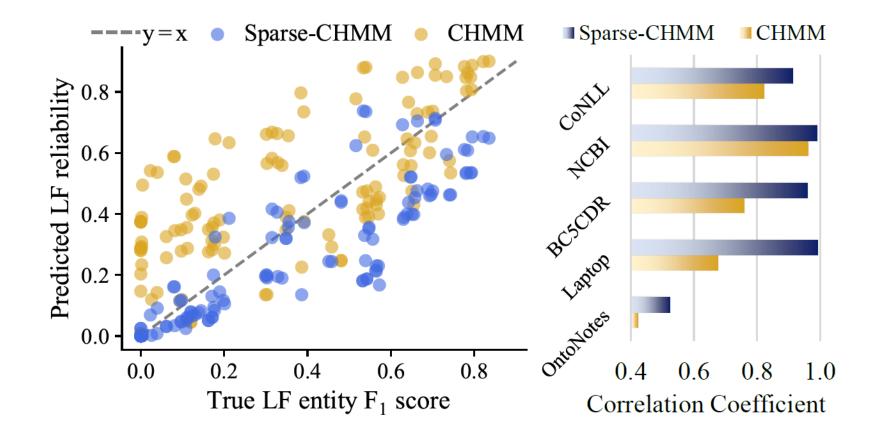
Main Results

Models		CoNLL 2003	NCBI-Disease BC5CDR		LaptopReview	OntoNotes 5.0
Supervised Methods	BERT-NER Best consensus CHMM-FE	90.74 (90.37 / 91.10) 86.73 (98.62 / 77.39) 71.43 (72.89 / 70.02)	88.89 (87.05 / 90.82) 81.65 (99.85 / 69.06) 81.86 (90.75 / 74.55)	88.81 (87.12 / 90.57) 88.42 (99.86 / 79.33) 86.45 (91.73 / 81.75)	81.34 (82.02 / 80.67) 77.60 (100.0 / 63.40) 72.38 (88.13 / 61.41)	84.11 (83.11 / 85.14) 85.11 (97.35 / 75.61) 67.99 (65.23 / 71.00)
Weakly Supervised Models	ConNet* MV* Snorkel* HMM* CHMM*	66.02 (67.98 / 64.19) 60.36 (59.06 / 61.72) 62.43 (61.62 / 63.26) 62.18 (66.42 / 58.45) 63.22 (61.93 / 64.56)	63.04 (74.55 / 55.16) 78.44 (93.04 / 67.79) 78.44 (93.04 / 67.79) 66.80 (96.79 / 51.00) 78.74 (93.21 / 68.15)	72.04 (77.71 / 67.18) 80.73 (83.79 / 77.88) 83.50 (91.69 / 76.65) 71.57 (93.48 / 57.98) 83.66 (91.76 / 76.87)	50.36 (63.04 / 42.73) 73.27 (88.86 / 62.33) 73.27 (88.86 / 62.33) 73.63 (89.30 / 62.63) 73.26 (88.79 / 62.36)	60.58 (59.43 / 61.83) 58.85 (54.17 / 64.40) 61.85 (57.44 / 66.99) 55.67 (57.95 / 53.57) 64.06 (59.70 / 69.09)
	Sparse-CHMM	71.53 (73.80 / 69.39)	82.24 (93.18 / 73.60)	86.63 (89.56 / 83.88)	75.90 (91.94 / 64.62)	64.85 (61.26 / 68.88)

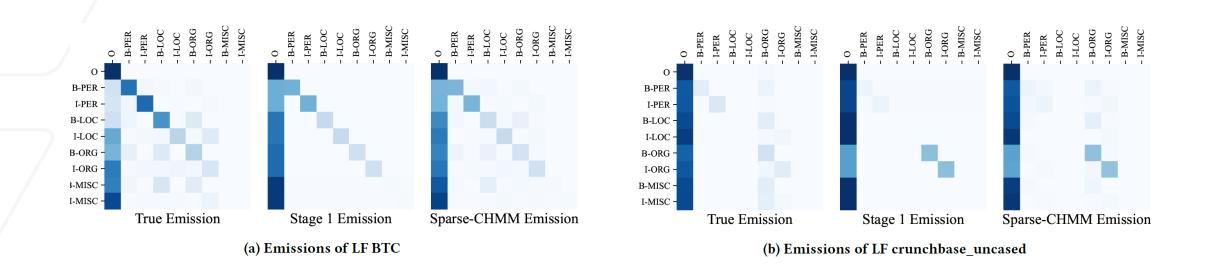
* Results are from the Wrench benchmark [31]. All weakly supervised models are evaluated with identical data and weak annotations.

- The models are trained on the training set (no labels) and tested on the test set (w/ gt, only for evaluation)
- The validation set is for early stopping and hyper-parameter fine-tuning

Reliability Prediction



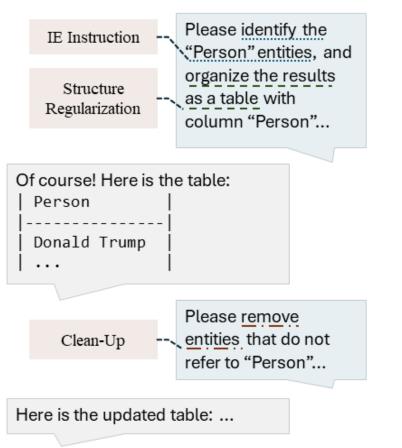
Case Study



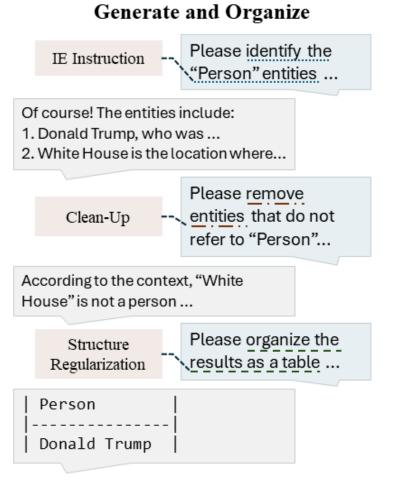
- Sparse-CHMM focuses on the diagonal and emit-to-O at stage 1
- It then refines the emission by adding the prominent off-diagonal back to the matrix
- Sparse-CHMM fits the LF reliabilities well without using any clean labeled data.

Zero-Shot IE with LLMs

57



Traditional One-Step Prompting



Reliable Uncertainty Quantification

 $01 \, \mathrm{MUBen}$

02 UQAC

Data-Efficient Model Learning

03 Information Extraction

 $04 \, \text{ELREA}$

Reliable Uncertainty Quantification

Data-Efficient Model Learning

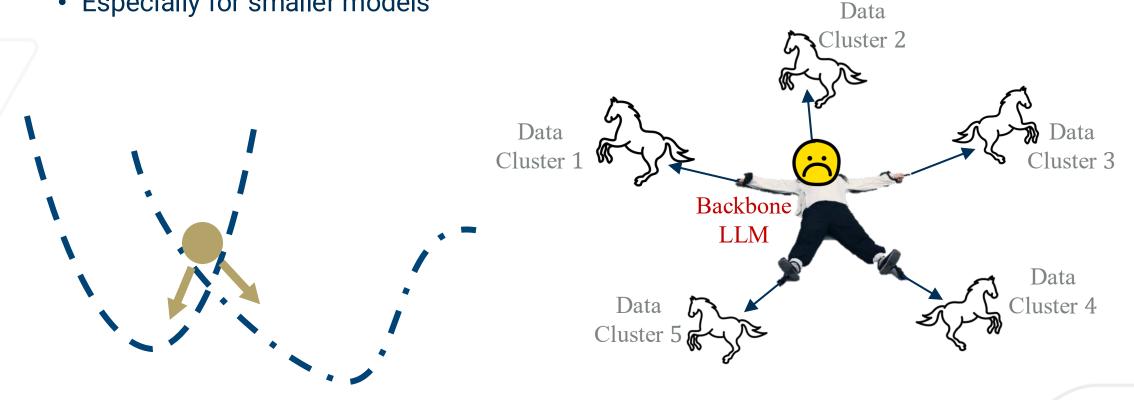
03 Information Extraction

$04 \, \text{ELREA}$

In ICLR 2025: https://openreview.net/forum?id=I0gZS0sAlf

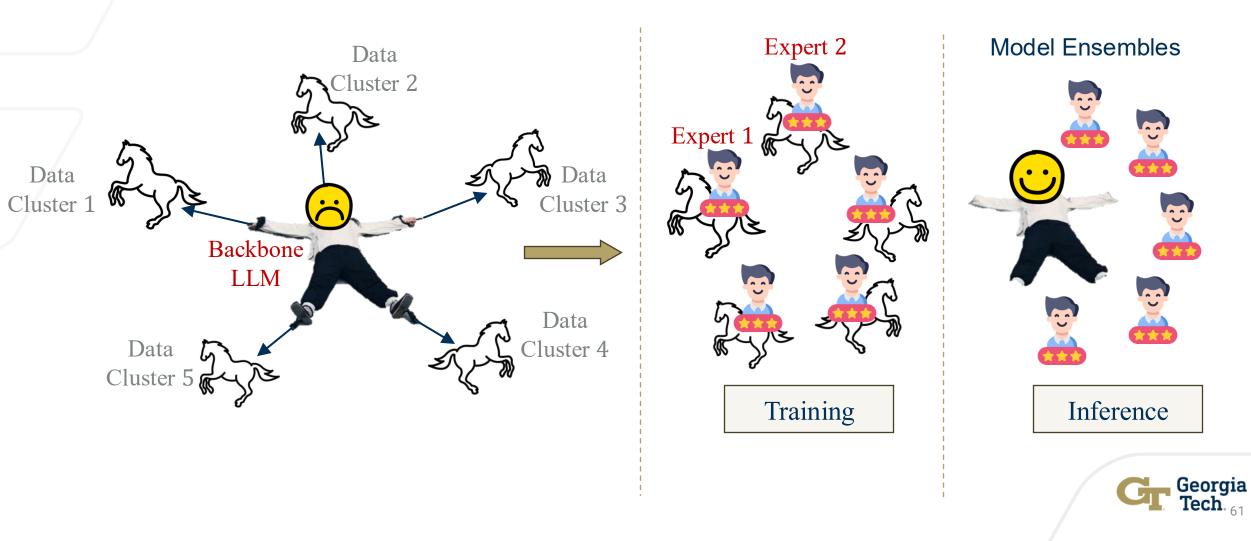
Motivation

- <u>Complicated task w/ diverse training data</u>, data points may lead to different update direction
 - Resulting in under-optimized models
 - Especially for smaller models



Expert Training

• Fit different expert models to different data clusters

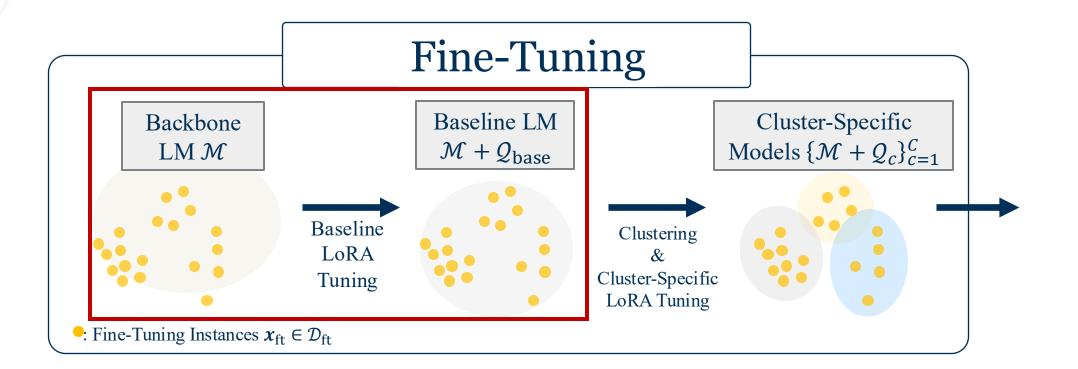


Ensembles of Low-Rank Expert Adapters (ELREA)

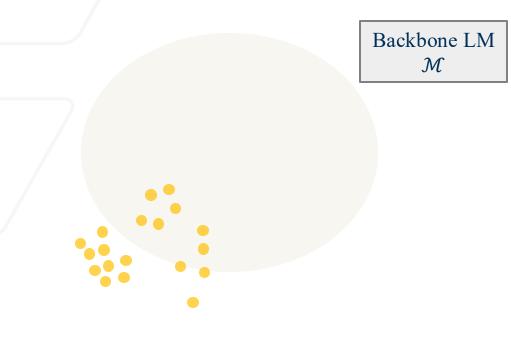
Pipeline



Fine-Tuning



Baseline LoRA Tuning



• : Fine-Tuning Instances $x_{ft} \in D_{ft}$

The backbone LM (Gemma, GPT, etc.) may not initially fit our fine-tuning data very well or lack domain knowledge

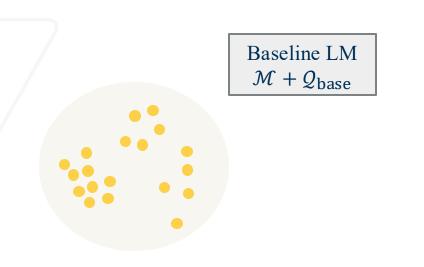
User Instruction

User: 1 + 1 = ?

System Response

System: A wise man once said: "...

Baseline LoRA Tuning



• : Fine-Tuning Instances $x_{ft} \in \mathcal{D}_{ft}$

Fine-tune the backbone LM on **all** data to inject domain knowledge or to adjust model distribution

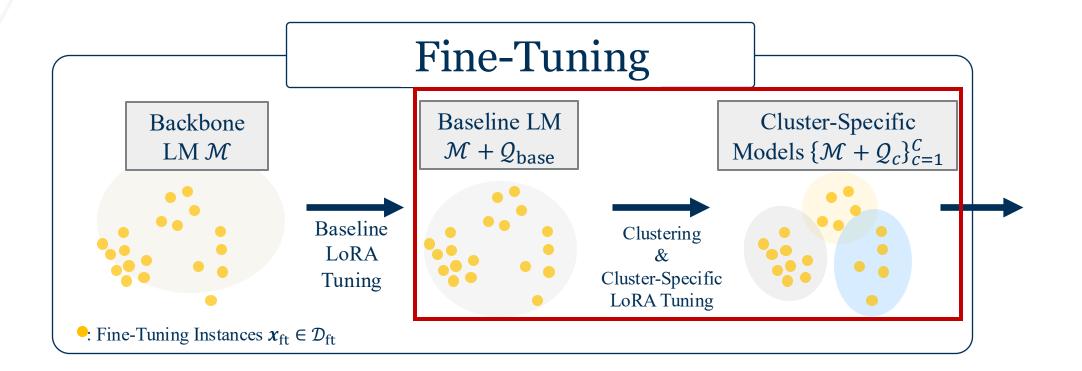
User Instruction

User: 1 + 1 = ?

System Response

System: A wise man once said: "...

Fine-Tuning



Data Clustering

Remove system responses in the training data

User Instruction

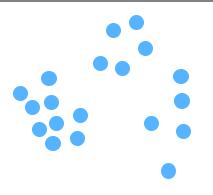
System Response

System: A wise man once said: "...

Data Clustering

Remove system responses in the training data

Fine-Tuning User Instructions **x**_{ft,instr}



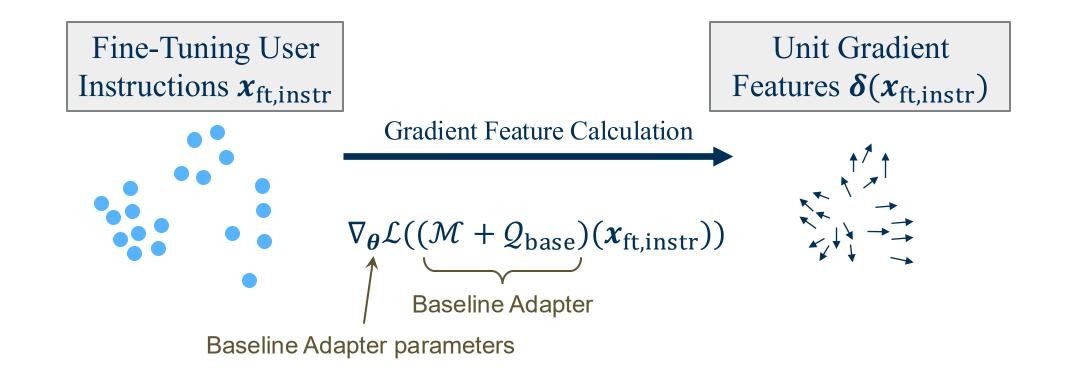
User Instruction

User: 1 + 1 = ?

System Response

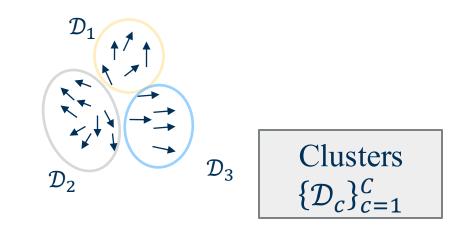
System: A wise man once said: "...

Gradient Features

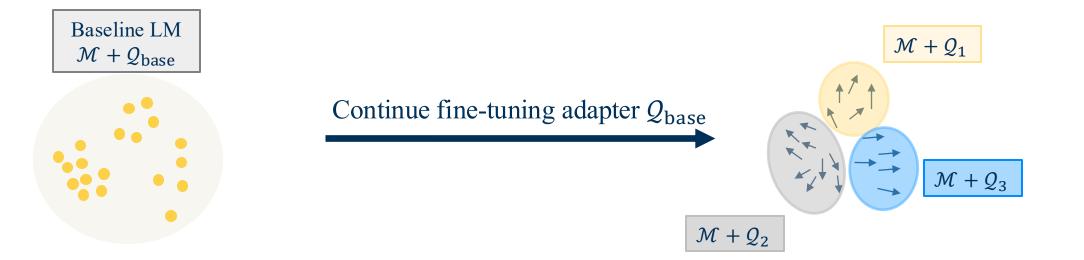


Clustering Gradient Features

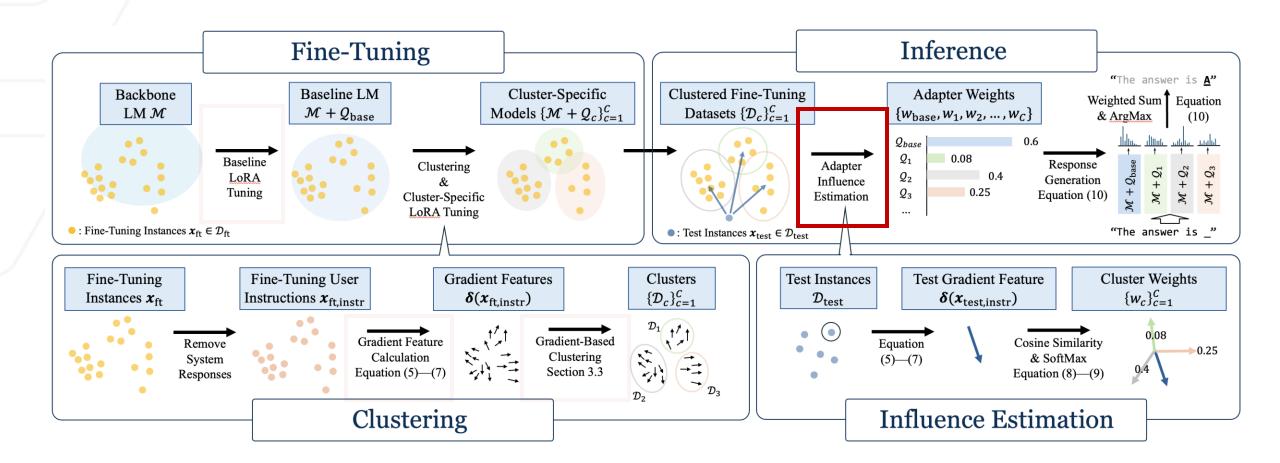
Unit Gradient Features $\delta(x_{\rm ft,instr})$

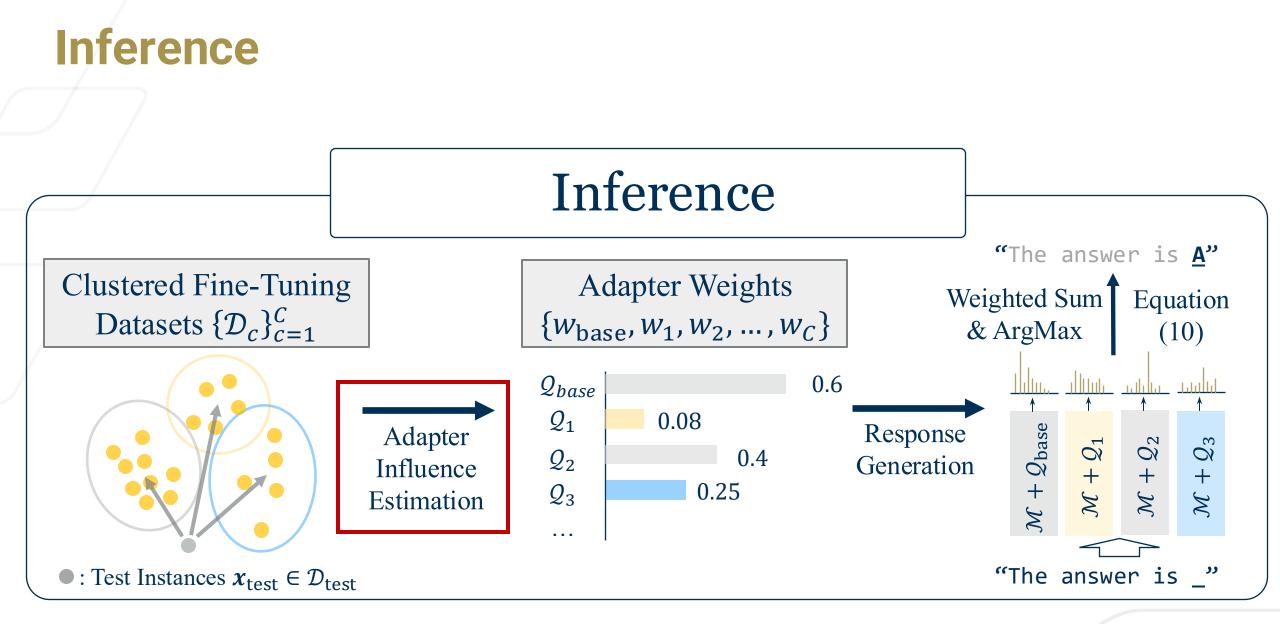


Fitting Expert Adapters



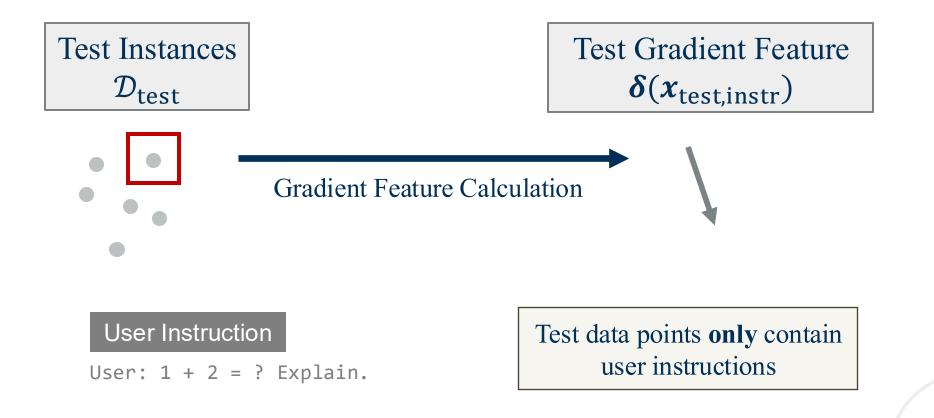
Pipeline



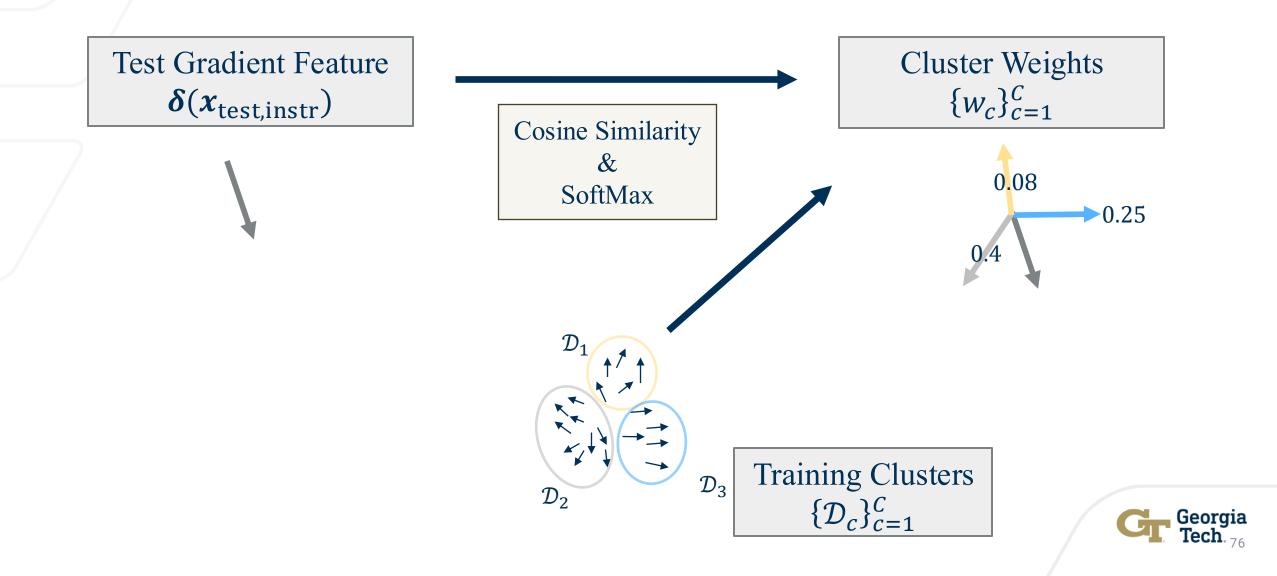


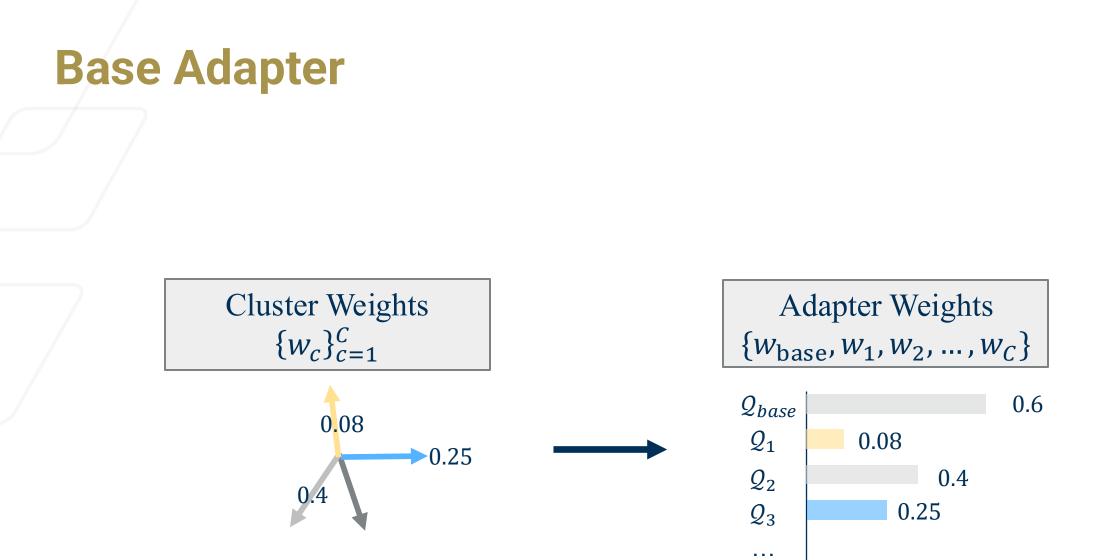
Adapter Influence Estimation (Routing)

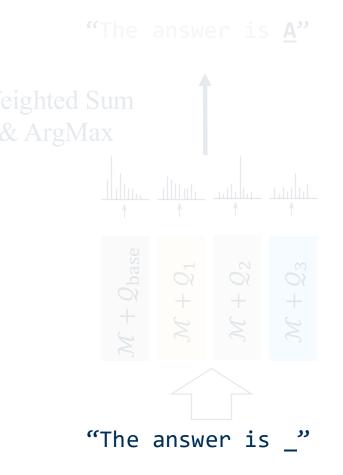
• To select the most appropriate adapter(s) for the test data point

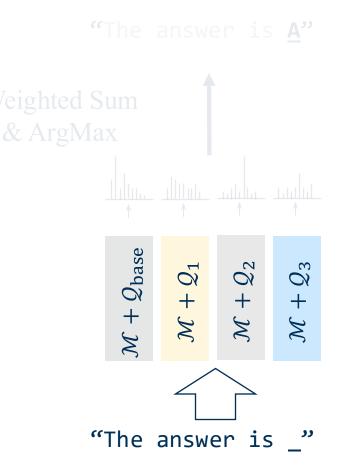


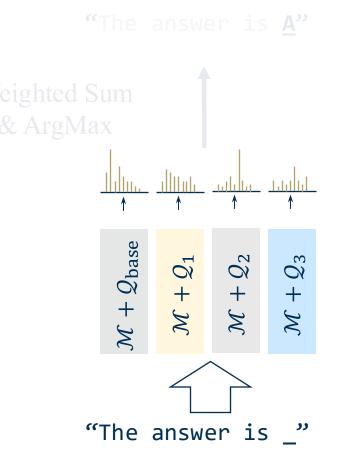
Adapter Influence Estimation (Routing)

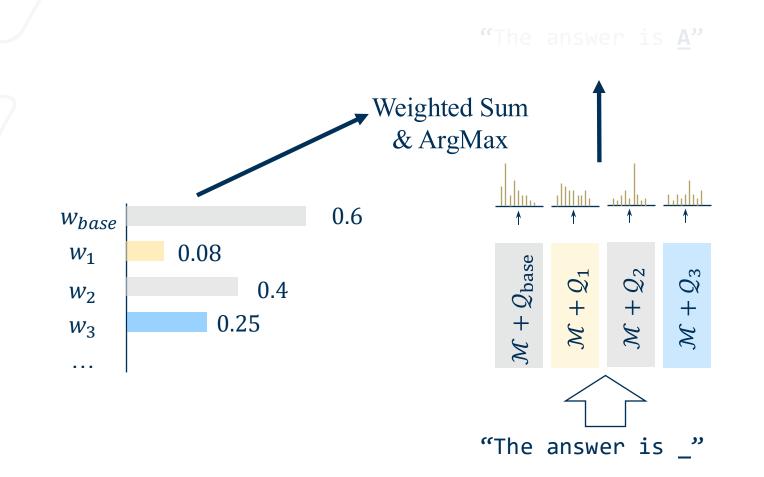


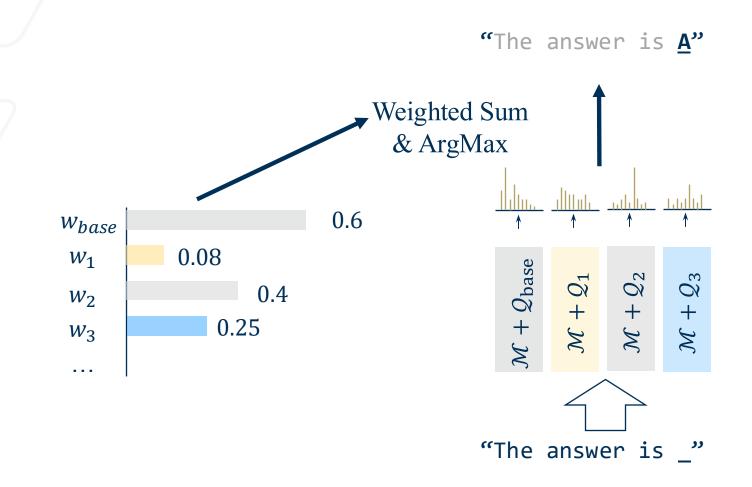












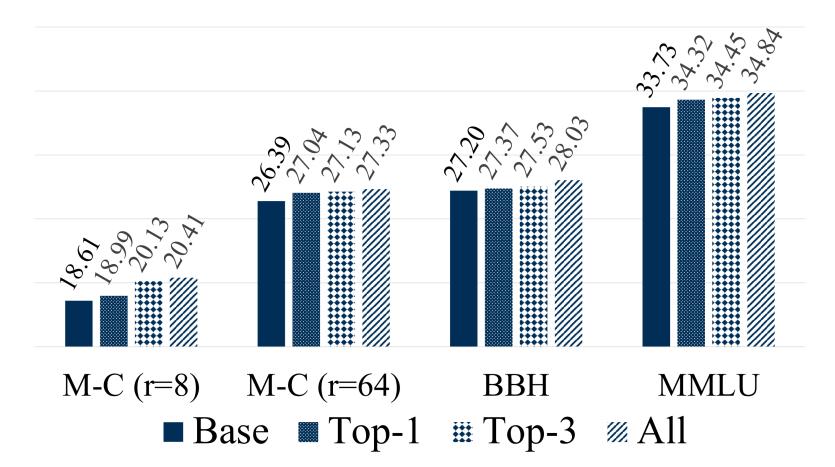
Main Results: Mathematical Reasoning

Methods	MATH	GSM8k	SVAMP	MathQA	Average (+Δ)
$\mathcal{M} + Q_{\text{base}}$	9.2	22.1	46.07	16.83	18.61
\mathcal{M} + Q_{dataset}	7.3	25.7	45	16.73	19.01 (+0.40)
MoE Routing	9.2	22.7	48.21	16.23	18.79 (+0.18)
MoE Merging	9.1	23.1	48.21	15.73	18.73 (+0.12)
MoLE	8.8	21.6	46.43	15.53	17.99 (-0.62)
LoRA Ensembles	9.3	24.7	47.5	16.73	19.55 (+0.94)
Self-Consistency	5.9	14.3	44.64	10.32	13.12 (-5.49)
Instruction Embedding	9.8	24.1	46.79	16.83	19.46 (+0.85)
ELREA	9.1	25.9	49.64	18.04	20.41 (+1.80)
Random Cluster	9.1	25.1	48.21	18.84	20.30 (+1.69)
Uniform Weights	9.6	25.2	47.5	18.04	20.16 (+1.55)

Expert Weight Distribution



Top-k Experts



Conclusion and Future Works

- Characteristics of molecular foundation models; and how to select appropriate UQ methods
- How to more reliably estimate the confidence of LLM responses
- How to conduct information extraction without relying on manual labels
- How to improve model performance without additional training data

Future Works

• Tighter connection between UQ and model learning

Thanks for Attending!

