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Figure 1. An overview of MUBen with datasets, backbone models, UQ methods, and metrics enumerated.

o Pre-trained molecular representation models have demonstrated impressive We use a subset from MoleculeNet Benchmark (Wu et al., 2018)
representational capabilities, achieving SOTA performance on a variety of Category Dataset  # Compounds # Tasks Average LIR  Max LIR
s BBBP 2,039 1 0.7651 0.7651
property prediction tasks. = ClinTox 1,478 2 0.9303 0.9364
g= Physiology Tox21 7,831 12 0.9225 0.9712
- : . - o 9 ToxCast 8,575 617 0.8336 0.9972
o Itis desirable for predictions to be precise and uncertainty-aware < SIDER v o e GG
o To allows us to distinguish noisy predictions and improve model robustness or estimate E BACE 1,513 1 0.5433 0.5433
o @ Biophysics HIV 41,127 1 0.9649 0.9649
data distributions. o | - | MUV 93,087 17 0.9980 0.9984
o Downstream tasks/applications: active learning; high throughput screening; wet-lab o Physical ESOL 1,128 1 - -
: . .S : FreeSolv 642 1 - -
experimental design. § Chemistry Lipophilicity 4200 1 ) )
| | B ST QM7 7,160 1 - :
o MUBen: Uncertainty Benchmark for Molecular Properties ©  Mechanics S vl . j :

o Combines various uncertainty quantification (UQ) methods with representative
molecular representation backbones.
o Evaluates both property prediction & uncertainty estimation on various MoleculeNet

tasks with different metrics.
o The most comprehensive molecular UQ evaluation so far. Results & Observation
Comparions of Backbone Models
Backbone Models
Classification Mean Reciprocal Ranks Regression Mean Reciprocal Ranks

LIR: Label Imbalance Ratio: LIR, € [0.5,1] = max{ppos, 1 — Ppos}; Ppos = 2ier I(l; = 1)/N
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o ChemBERTa (Chithrananda et al., 2020; Ahmad et al., 2022) ROC-AUC = N Brier Score RMSE MAE NLL cF
2D Gra h mEDNN ®=mChemBERTa GROVER Uni-Mol EDNN m®mChemBERTa = GROVER Uni-Mol
© p Figure 2. MRR of DNN, ChemBERTa, GROVER and Uni-Mo], each is macro-averaged from the reciprocal ranks of
o GROVER (Rong et al., 2020) the results of all corresponding UQ methods on all datasets. GIN consistently underperforms other backbones.
o GIN (not pre-trained, Xu et al., 2019) _ o
o 3D Graph o Uni-Mol performs the best for property prediction (ROC-AUC, RMSE and MAE), but

tend to be over-confident, yielding sub-optimal calibration (ECE and CE).

o GROVER is a safer choice when both prediction and UQ performance are required.

o Pre-trained models do not invariably surpass heuristic features, as shown in the comparison
between DNN & ChemBERTa for regression.

Comparisons of Uncertainty Quantification Methods
Uncertalnty Quantlflcatlon MEthO dS Classification Mean Reciprocal Ranks Regression Mean Reciprocal Ranks

o Uni-Mol (Zhou et al., 2023)
o TorchMD-NET (Thélke & Fabritiis, 2022; Zaidi et al., 2023)
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o Deterministic Prediction: one-time learning &inference o o2
o Post-activation probability (classification) & mean-variance (regression) oo I “II I I I III II I o I II I II I
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o Focal Loss (classification-only, Lin et al., 2017; Mukhoti et al., 2020) increases the ROC.AUC ECE NLL 8S AMSE MAE NLL CE
entropy of the predicted distribution by minimizing a regularized KL divergence m Deterministic = Temperature = Focal Loss = MC Dropout m Deterministic = MC Dropout = SWAG
m SWAG m BBP m SGLD Ensembles = BBP mSGLD ® Ensembles

between the predicted values and the true labels.
Figure 3. MRR of all UQ methods, macro-averaged of DNN, ChemBERTa, GROVER and Uni-Mol on all datasets.

o Bayesian Learning and Inference: distribution over parameters o Most UQ methods enhance both value prediction and uncertainty estimation.
o Bayes by Backprop (BBP, Blundell et al., 2015 Kingma et al., 2015), an algorithm for o BBP and SGLD fail on classification but deliver the greatest improvement on regression.

- : _ . o Deep Ensembles guarantees to improve the prediction and UQ results, but at a cost of
training Bayesian Neural Networks (BNNs) with Monte Carlo loss estimation and

. _ _ _ heavy computational consumption.
(local) reparameterization trick for gradient backpropagation. o MC Dropout is cheap to adopt and theoretically does not risk model performance under

o Stochastic Gradient Langevin Dynamics (SGLD, Welling & Teh, 2011) applies Langevin any circumstances, making it a first-pick when computation resource is limited.
dynamics to infuse noise into the stochastic gradient descent training process. o Temperature Scaling is also cheap for classification calibration, but it may fail when the
o MC Dropout (Gal & Ghahramani, 2016) derives uncertainties from an ensemble of held-out calibration dataset has a distribution different from the test set.
multiple stochastic forward passes with dropout enabled. Case Studies
o SWA-Gaussian (SWAG, Maddox et al., 2019) estimates Gaussian posteriors over 0]y T
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weights with low-rank stochastic weight averaging (SWA, Izmailov et al., 2018).
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o Post-Hoc Calibration: adjusting the model outputs after training N4 = | S A A% SN W
o Temperature Scaling (classification-only, Platt et al., 1999; Guo et al., 2017) adds a O ey sy et oo e somtg et
learned scaling factor to the Sigmoid or SoftMax output activation to control the IDININT o 1 DIEL Uni-Mol on SIDER DNN on FreeSolv Uni-Mol on FreeSolv
output spikiness. | _
Quantum Mechanics Physical Chemistry Biophysics Physiology

o Deep Ensembles I
o Trains a deterministic network multiple times with different random seeds and I
combines their predictions at inference (Lakshminarayanan et al., 2017).
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