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SUMMARY

Pre-trained foundation models have become indispensable in modern Natural Language

Processing (NLP) and scientific domains, evolving into Large Language Models (LLMs)

with impressive zero- and few-shot capabilities. Despite their widespread success, chal-

lenges persist in real-world applications due to distribution shifts between training and

inference data, opaque inference processes, and limited in-domain manually labeled exam-

ples. These issues complicate reliable confidence estimation and application of foundation

models in downstream tasks. To address these concerns, this thesis explores two primary

research directions: 1) reliable Uncertainty Quantification (UQ) and 2) data-efficient model

learning.

In addressing reliability, we investigate different UQ methods and develop novel tech-

niques to enhance model calibration. Molecular Uncertainty Benchmark (MUBen) estab-

lishes a best-practice benchmark for UQ in molecular representation models, thoroughly

evaluating uncertainty calibration and predictive accuracy in large-scale discriminative tasks.

Expanding uncertainty estimation techniques to autoregressive LLMs, we introduce Un-

certainty Quantification with Attention Chain (UQAC), an approach that employs iterative

attention-chain backtracking to approximate an otherwise intractable marginalization over

Chain of Thought (CoT) reasoning paths, thus enhancing confidence estimation robustness

for LLMs.

Regarding data efficiency, our work targets scenarios characterized by limited or noisy

labeled data. In zero-shot Named Entity Recognition (NER), we develop Conditional

Hidden Markov Model (CHMM) and Sparse Conditional Hidden Markov Model (Sparse-

CHMM), which effectively exploit weak supervision signals through contextual embed-

dings from autoencoding foundation models, employing sparsity regularization to improve

robustness. Additionally, we propose Generate and Organize (G&O), a zero-shot Infor-

mation Extraction (IE) framework leveraging the powerful reasoning abilities of autore-

xix



gressive LLMs. Lastly, we introduce Ensembles of Low-Rank Expert Adapters (ELREA),

designed for date-efficient multi-task fine-tuning, which clusters training instructions based

on gradient directions and applies task-specific Low-Rank Adaptation (LoRA) experts

through ensemble techniques. ELREA mitigates task interference, promoting better gener-

alization and parameter efficiency.

Together, our proposed methods enhance the trustworthiness and adaptability of pre-

trained models in critical domains by addressing uncertainty concerns and reducing de-

pendency on extensive labeled data. The thesis underscores the importance of calibration,

interpretability, and scalable fine-tuning strategies in developing robust, data-efficient so-

lutions suitable for high-stakes real-world applications.
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CHAPTER 1

INTRODUCTION

1.1 Background

Recent years have witnessed significant advances in pre-trained foundation models. Build-

ing on the success of self-supervised word embedding methods such as Word2Vec [1] and

Global Vectors (GloVe) [2] in the domain of NLP, the practice of training relatively simple

Neural Networks (NNs) on large-scale datasets and transferring their learned representa-

tions to downstream tasks has been extended to other areas, including Computer Vision

(CV) [3, 4], graph representation [5, 6, 7], and molecular embedding [8]. This paradigm

has become a standard approach in Machine Learning (ML), as these embedding meth-

ods leverage large datasets to learn generalizable representations that can be used as fixed

vectors for various downstream tasks.

The concept of self-supervised representation learning has led to the emergence of Pre-

Trained Language Models (PLMs), exemplified by Embeddings from Language Models

(ELMo) [9], Bidirectional Encoder Representations from Transformers (BERT) [10], and

Generative Pre-Trained Transformer (GPT) [11]. ELMo, which employs Long Short-Term

Memory (LSTM) networks [12], captures syntactic and semantic information via deep

contextualized word representations and can be fine-tuned on downstream tasks by con-

catenating pre-trained weights with task-specific layers. Building on the Transformer ar-

chitecture [13], BERT and GPT scale self-supervised objectives to unprecedented levels

w.r.t. model parameters and training corpora, achieving remarkable success in NLP. They

represent two main paradigms of PLMs: autoencoding and autoregressive, respectively.

Autoencoding models such as BERT train Transformer encoders to reconstruct masked

tokens using bidirectional context and excel in discriminative tasks such as sequence or
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token label prediction. Autoregressive models such as GPT use Transformer decoders to

predict the next token based on previous tokens, a setup particularly effective for text gen-

eration tasks such as summarization, translation, and dialogue generation. Owing to the

causal Next-Token Prediction (NTP) objective, GPT scales more effectively [14, 15] and

generates high-quality text, inspiring LLMs such as GPT-3 [16], GPT-4 [17], Llama [18],

Mistral [19], etc. These LLMs, often containing hundreds of billions of parameters, can

perform many tasks in zero- or few-shot settings. Further enhancements, including CoT

prompting [20], Mixture of Experts (MoE) [21], Reinforcement Learning from Human

Feedback (RLHF) [22], LoRA [23], Group Relative Policy Optimization (GRPO) [24],

and Reasoning-oriented Reinforcement Learning (RL) [25], bolster their capabilities in

reasoning, coding, and mathematical problem solving.

The success of PLMs has likewise expanded to scientific domains such as chemistry and

materials science, enabling breakthroughs in molecular property prediction [26, 27, 28, 29],

protein structure prediction and design [30, 31, 32], and drug discovery [33]. Autoencoding

models in these fields first treat molecules as token sequences (e.g., Simplified Molecular

Input Line Entry System (SMILES) strings [34]) and train with the Masked Language

Model (MLM) objective [10] to reconstruct masked tokens, following approaches similar

to those in NLP [27, 26, 35]. Subsequent works have explored alternative input represen-

tations such as 2D or 3D graphs, combined with training objectives like connection re-

construction or conformation prediction, to support foundational pre-training [36, 28, 29].

By contrast, autoregressive LLMs designed for scientific tasks often adapt general-purpose

models via specialized prompting techniques [37] or conduct pre-training/fine-tuning on

domain-specific text corpora [31, 32] to inject specialized knowledge. In the following

discussions, we do not strictly distinguish between pre-trained foundation models and lan-

guage models; instead, we uniformly refer to them as PLMs, despite potential variations in

their input formats and training objectives.
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1.2 Challenges

Despite the rapid progress in PLMs and their impressive capabilities, several critical chal-

lenges persist, particularly when these models are deployed in real-world scenarios. First,

although PLMs exhibit remarkable performance in zero-shot or few-shot settings within

domains aligned to their training data, they often struggle when presented with Out-Of-

Distribution (OOD) data or with tasks that diverge significantly from their training distribu-

tions [20, 38]. Moreover, large-scale models, either in general or in scientific domains, can

be prone to overfitting, frequently exhibiting misplaced confidence in their predictions [39,

40, 41]. This issue is exacerbated by the “black-box” nature of PLMs, which makes it diffi-

cult to ascertain how their outputs are derived or to precisely define the boundaries of their

training distribution. Such opacity is particularly problematic in critical domains such as

healthcare, finance, law, or materials design, where labeled evaluation data are scarce and

the cost of errors can be substantial [42, 43, 44, 45, 46]. In these high-stakes contexts, ig-

noring uncertainty and reliability assessments may lead to erroneous decisions with serious

consequences, including harm to individuals and significant financial losses. Hence, there

is an urgent need to develop robust methods for interpretable UQ and reliability assessment

of PLMs in such critical domains.

Another major challenge lies in data efficiency. While PLMs generally rely on large-

scale pre-training, labeled data for fine-tuning can be limited or expensive to acquire in

specialized areas [47, 48, 49]. Even in more general domains, substantial amounts of la-

beled data may still be required to achieve robust performance on certain downstream tasks,

underscoring the continued importance of fine-tuning. This challenge becomes even more

pronounced in scientific fields, where data annotation often demands extensive domain-

specific expertise and is thus labor-intensive and costly [50, 51, 52, 53]. Consequently,

there is a growing need for reliable data-efficient model learning and fine-tuning tech-

niques that enable PLMs to be effectively adapted to specialized tasks despite scarce la-
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beled resources. Developing such methods is vital to ensure PLMs can achieve their best

performance in these resource-constrained, high-stakes scenarios.

1.3 Research Focus

To address the aforementioned challenges, this thesis pursues two main directions: 1) in-

vestigating and developing reliable methods for quantifying the uncertainty of PLMs; and

2) improving data-efficient approaches to tackle critical downstream tasks.

Reliable Uncertainty Quantification The first line of research begins with MUBen [41],

a benchmarking framework designed to offer best practices for UQ in molecular property

prediction (chapter 2). MUBen systematically compares a range of prevailing UQ tech-

niques, drawn from multiple categories, and applies them to a variety of State-of-the-Art

(SOTA) large-scale pre-trained discriminative molecular representation models that use dif-

ferent molecular descriptors [28, 36, 29]. Through rigorous evaluations of prediction and

calibration performance across multiple tasks, MUBen distills actionable insights on how

to build more reliable, uncertainty-aware molecular models.

Continuing on this front, we propose a novel UQ pipeline for autoregressive LLMs,

named UQAC [54] (chapter 3). Advanced autoregressive LLMs generate CoT reasoning

steps in their responses for better accuracy; but UQAC focuses on measuring the model’s

confidence only in its final answer, effectively requiring an intractable marginalization over

all possible reasoning paths. To make the marginalization practical, UQAC iteratively

constructs an “attention chain” of tokens deemed crucial to the final output via a special-

ized backtracking procedure. By integrating this attention chain with probability-based

candidate-token thresholding, UQAC significantly reduces the space of plausible reason-

ing paths and consequently offers a more reliable confidence estimate of the final answer.

Data-Efficient Model Learning The second branch of this thesis tackles data efficiency

in specialized settings. We first investigate the zero-shot NER problem, i.e., extracting
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structured named entities from text without any manual annotations (chapter 4). The pri-

mary focus is on weak supervision approaches, which rely on multiple weak Labeling

Functions (LFs) to generate diverse but noisy labels for each instance and then integrate

them into a uniformed sequence [55, 56]. Building upon Hidden Markov Models (HMMs)

for label aggregation [57, 58], we introduce CHMM [59], which leverages contextual em-

beddings from autoencoding PLMs such as BERT to incorporate richer input semantics.

Its successor, Sparse-CHMM [60], imposes sparsity constraints on emission matrices, im-

proving both training efficiency and robustness in cases where the numbers of labels or

LFs are large. With the rapid advancements in LLMs, the thesis then presents G&O [61],

which explores effective strategies to harness powerful autoregressive LLMs for zero-shot

IE tasks.

The thesis then addresses the challenge of data-efficient training and fine-tuning for au-

toregressive LLMs, particularly when data originate from diverse sources. Recent findings

suggest that large-scale fine-tuning can suffer from conflicting gradient directions across

tasks, sometimes harming model generalization. Further, research indicates that carefully

curating smaller task-specific datasets can match or surpass the performance of fine-tuning

with all available data [62]. Consequently, we introduce ELREA [63] (chapter 5), a method

designed to maximize training-data utilization while mitigating conflicting gradient up-

dates. ELREA clusters training instructions by their gradient directions, effectively parti-

tioning the data into distinct “expertise regions.” Expert adapters are then trained on these

clusters using LoRA, enhancing both efficiency and model scalability. During inference,

ELREA automatically identifies which cluster and the corresponding adapter is most rele-

vant for a given input, based on the similarity of gradient directions. In doing so, ELREA

ensures that each input is handled by the most suitable adapter, thereby improving general-

ization and performance on diverse downstream tasks.
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1.4 Broader Impact

The contributions in this thesis have broader implications both within and beyond tradi-

tional ML research. First, improving UQ in PLMs holds significant societal importance,

particularly for sensitive fields such as healthcare, finance, and law, where overly confi-

dent or poorly calibrated predictions can result in grave consequences. By providing robust

and interpretable approaches to UQ, we empower practitioners and researchers to better

assess and mitigate the risk of model mispredictions, thereby enhancing decision-making

processes in high-stakes settings.

Second, advancements in data efficiency can substantially broaden the accessibility of

PLMs across various domains, especially those with limited labeled data. Rather than

requiring massive annotated datasets for each new task, data-efficient approaches enable

practitioners to make effective use of smaller, carefully curated datasets or weak supervi-

sion signals. This not only lowers the barrier to entry for small organizations or research

teams with limited annotation budgets but also reduces the computational overhead, pro-

moting more sustainable and environmentally conscious AI practices.

Finally, the methodological innovations in this thesis span uncertainty benchmarking,

autoregressive confidence estimation, and specialized fine-tuning, underscoring the impor-

tance of open and reproducible science. The proposed frameworks and pipelines are de-

signed to be generalizable across different application domains, and we strive to release

code, data, and results to the research community. By doing so, we aim to facilitate further

development, foster collaborative research, and promote responsible deployment of PLMs

in real-world scenarios. Collectively, these efforts help ensure that high-performing lan-

guage models remain transparent, reliable, and accessible, ultimately contributing to the

ethical and equitable advancement of AI technologies.
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CHAPTER 2

BENCHMARKING MOLECULAR REPRESENTATION UNCERTAINTIES

2.1 Introduction

Learning effective molecular, protain, or material representations is critical for satisfying

target prediction performance in a wide range of scientific tasks across chemistry, biology,

and materials science [64]. With the emergence of self-supervised PLMs, there has been

a surge of interest in leveraging vast unlabeled molecular datasets to build large-scale pre-

trained molecular representation models (referred to as molecular PLMs herein) [27, 65, 36,

28, 29, 66]. These models have demonstrated impressive representational power, achieving

SOTA performance in various molecular property prediction tasks [67].

Molecular PLMs can be broadly characterized by the descriptor types they employ.

Earlier works often utilize string-based inputs (e.g., ChemBERTa [26]) or 2D graph-based

methods (e.g., Graph Isomorphism Network (GIN) and GROVER [65, 68]), each capturing

distinct structural and chemical cues. In parallel, explicit 3D geometries have recently

gained traction for their ability to capture richer spatial information. Among these 3D-

based approaches, invariant models (e.g., SchNet [69], SphereNet [70], GemNet [71], etc.)

leverage scalar features that remain unchanged under rotations, translations, and reflections,

while equivariant models (e.g., TFN [72], Equiformer [73], LEFTNet [74], etc.) maintain

consistent representations when subjected to these transformations. Although 3D modeling

typically demands more computational resources and geometric information, it has shown

promise in boosting predictive accuracy, particularly for geometrically sensitive tasks.

While predictive performance remains central to molecular modeling, real-world appli-

cations often require reliable estimates of model confidence to mitigate risk. Accurate UQ

facilitates the identification of uncertain or unreliable predictions, which is increasingly
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critical for tasks such as high-throughput screening [75, 76], detecting activity cliffs [77],

and guiding experimental design [43, 44]. However, large-scale PLMs frequently overfit

during fine-tuning, yielding overconfident yet erroneous predictions [39].

A variety of UQ strategies have been recently investigated [78], encompassing both

Bayesian methods (e.g., Monte Carlo Dropout (MC Dropout) [79]) and non-Bayesian

approaches (e.g., Deep Ensembles [80], evidential networks [81], and post-hoc calibra-

tion [82]). For example, [83] incorporate post-hoc recalibration [39] into a Message Pass-

ing Neural Network (MPNN) [84] to mitigate overconfidence in molecular property pre-

diction; [44] apply evidential message passing networks [81, 85] to quantitative structure-

activity relationship regression; and [86] use Bayesian optimization for reliable predictions

of nanoporous material properties and experimental guidance.

Despite these contributions, several important limitations persist. 1) The variety of un-

certainty estimation methods considered is often narrow, overlooking potentially effective

strategies. 2) Most existing research focuses on a confined set of molecular properties (of-

ten quantum-mechanical), rather than exploring a broader spectrum of tasks. 3) To date,

none of these investigations fully embrace recent pre-trained molecular backbones, whose

strong predictive performance and unique architectural characteristics could distinctly af-

fect UQ outcomes. Accordingly, a comprehensive study on how different UQ methods

perform when paired with modern pre-trained molecular PLMs is still lacking and remains

an urgent research gap.

To bridge these gaps, we publish MUBen [41], a benchmark specifically designed to

systematically evaluate UQ methods across diverse molecular PLMs and multiple property

prediction tasks, as illustrated in Figure 2.1. MUBen explores UQ methods spanning deter-

ministic prediction, Bayesian Neural Networks (BNNs), post-hoc calibration, and Deep En-

sembles, deploying them on a broad set of molecular PLMs with different descriptor types

(e.g., string, 2D, and 3D graphs) and architectures (e.g., Deep Neural Network (DNN),

Graph Neural Network (GNN), and Transformers). Through extensive experiments and
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Figure 2.1: MUBen overview.

analyses, MUBen aims to yield new insights and best practices for model and UQ strategy

selection in practical molecular modeling workflows. Our open-source implementation is

available at https://github.com/Yinghao-Li/MUBen, featuring a modular design that is user-

friendly, transferable, and straightforward to extend. We hope that MUBen will stimulate

the future development of UQ methods, pre-trained molecular models, and their applica-

tions in materials science and drug discovery.
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2.2 Problem Setup

Let x denote a descriptor of a molecule, such as a SMILES string or a 2D topological

graph. Variable y is the label with domain y ∈ {1, . . . , K} for K-class classification

or y ∈ R for regression. θ denotes all parameters of the molecular PLM M and the

additional task-specific output layer. We assume that a training dataset D consists of N

i.i.d. samples D = {(xn, yn)}Nn=1. The goal of an uncertainty-aware molecular PLM fine-

tuning is to optimize the model parameters θ on D in order to develop a predictive model

that accurately estimates the probability distribution pθ(y|xn). To estimate how well the

model captures the uncertainty of the predictions, we introduce the following metrics to

evaluate the UQ performance from different perspectives.

2.2.1 Negative Log-Likelihood

Negative Log-Likelihood (NLL) is often utilized to assess the quality of model uncertainty

on holdout sets for both classification and regression tasks. Despite being a proper scor-

ing rule as per Gneiting’s framework [87], certain limitations such as overemphasizing tail

probabilities [88] make it inadequate to serve as the only UQ metric. For binary classifica-

tion with Sigmoid output activation, NLL is given by:

NLL = − 1

N

N∑
n=1

[yn log p̂n + (1− yn) log(1− p̂n)] , (2.1)

where yn ∈ {0, 1} is true label and p̂n ∈ (0, 1) = pθ(ŷn | xn) is predicted probability. For

regression, the Gaussian NLL is calculated as:

NLL = − 1

N

N∑
n=1

logN (yn; ŷn, σ̂n) =
1

N

N∑
n=1

1

2

[
log(2πσ̂n) +

(yn − ŷn)
2

σ̂n

]
, (2.2)

where ŷn ∈ R is the predicted mean and σ̂n ∈ R+ is the predicted variance regularized by

the SoftPlus activation.
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2.2.2 Brier Score

Brier Score (BS) [89] quantifies the mean squared error between predicted probabilities

and actual labels, and is recognized as a proper scoring rule for classification tasks. The

formula for the BS is given by:

BS =
1

N

N∑
n=1

K∑
y=1

(pθ(y|xn)− I(y = yn))
2 , (2.3)

where I(·) is the indicator function. Specifically, I(a = b) = 1 if a = b; otherwise,

I(a = b) = 0.

2.2.3 Calibration Errors

Calibration Errors measure the correspondence between predicted probabilities and empir-

ical accuracy. For classification, we use Expected Calibration Error (ECE) [90], which first

divides the predicted probabilities {pθ(yn | xn)}Nn=1 into S bins Bs = {n ∈ {1, . . . , N} |

pθ(yn | xn) ∈ (ρs, ρs+1]} with s ∈ {1, . . . , S}, each with size Ns, and then compute the L1

loss between the accuracy and predicted probabilities within each bin:

ECE =
S∑

s=1

Ns

N

∣∣∣∣∣ 1Ns

∑
n∈Bs

I(yn = ŷn)−
1

Ns

∑
n∈Bs

pθ(ŷn | xn)

∣∣∣∣∣ , (2.4)

where ŷn = argmaxy pθ(y | xn) is the n-th prediction.

For regression tasks, Regression Calibration Error (RCE) [91] measures the accuracy

of prediction intervals. It calculates the true frequency of the predicted points falling within

each confidence interval against the predicted fraction of points in that interval:

CE =
1

S

S∑
s=1

(
s

S
− 1

N

∣∣∣{n ∈ {1, . . . , N} | Fθ(yn;xn) ≤
s

S
}
∣∣∣)2

, (2.5)

where s
S

represents the expected quantile. Fθ(yn;xn) denotes the predicted quantile value
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Table 2.1: Model statistics.

Model # Parameters (M) Average Time per Training Step (ms)(a)

DNN 0.158 5.39
ChemBERTa 3.43 30.18

GROVER 48.71 334.47
Uni-Mol 47.59 392.55

TorchMD-NET 7.23 217.29
GIN 0.26 7.21

(a) All models are evaluated on the BBBP dataset with a batch size of 128. We only
measure the time for forward passing, backward passing, and parameter updating. We
train the model for 6 epochs and take the average of the last 5 to reduce the impact of
GPU initialization.

for yn, such as a Gaussian cumulative distribution function Φ(yn; ŷn, σ̂n), which is param-

eterized by the estimated mean ŷn and variance σ̂n assuming a Gaussian distribution.

2.3 Experiment Setup

2.3.1 Molecular Descriptors and Backbone Models

Molecular descriptors transform molecular structures into computational representations—such

as fingerprints, SMILES strings, or graphs—thereby enabling various machine learning and

computational analyses. Different descriptors, when paired with model architectures that

have distinct inductive biases, can offer complementary advantages in downstream tasks.

In this work, we select 4 primary backbone models, each distinguished by its in-

put descriptor: 1) ChemBERTa [26, 35], a Transformer-based architecture that processes

SMILES strings; 2) GROVER [36], which combines Transformer encoders and dynamic

message-passing GNNs for 2D molecular graphs; 3) Uni-Mol [29], a Transformer special-

izing in 3D molecular conformations to capture spatial relationships; 4) a fully connected

DNN with fixed 200-dimensional RDKit features, serving as a baseline to compare heuris-

tic versus learned representations.

Additionally, we incorporate two supplementary backbones for broader exploration:

5) TorchMD-NET [92, 93], an equivariant Transformer architecture pre-trained on quan-
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Table 2.2: Computation resources required by different uncertainty estimation methods.
We assume that we have already trained a deterministic backbone model for property pre-
diction, and would like to build up a UQ method on top of it.

UQ Method Training Starting Checkpoint Additional Cost(a)

Deterministic - 0

Temperature from fine-tuned backbone (Tinfer + Ttrain-FFN)×Mtrain-extra
Focal Loss from scratch Ttrain ×Mtrain

MC Dropout no training Tinfer ×Minfer
SWAG from fine-tuned backbone Ttrain ×Mtrain-extra + Tinfer ×Minfer
BBP from scratch Ttrain ×Mtrain + Tinfer ×Minfer

SGLD from scratch Ttrain × (Mtrain +Mtrain-extra) + Tinfer ×Minfer
Ensembles from scratch Ttrain ×Mtrain × (Nensembles − 1)

(a) Ttrain and Tinfer are the time for one epoch of training and inference of the backbone model, respectively.
In general, Ttrain ≫ Tinfer. Mtrain, Mtrain-extra, and Minfer are the number of training epochs, additional
training epochs, and inference epochs, respectively (section A.3.1). In general, Mtrain ≫ Mtrain-extra. Dif-
ferent backbones and UQ methods have different T s and Ms, but we use the same symbols nonetheless for
simplicity. The result is a rough estimation without considering the additional inference time or the early
stopping if a model is retrained.

tum mechanical data; 6) GIN [94], a randomly initialized GNN baseline operating on 2D

graphs, included as a simpler point of comparison without any pre-trained features.

A summary of model statistics is presented in Table 2.1, and detailed model descriptions

can be found in section A.2.

2.3.2 Uncertainty Quantification Methods

In MUBen, we examine several popular UQ methods that span different methodological

families, as described below.

Deterministic Uncertainty Prediction A common approach for binary classification

tasks is to use Sigmoid outputs, interpreting the predicted class probabilities as measures

of uncertainty. For regression tasks, networks often predict both the mean and variance of

an independent Gaussian distribution, with the variance acting as an uncertainty estimate.

We label this approach as “deterministic.”

Focal Loss [95, 96] offers an alternative loss function that minimizes a regularized
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Kullback-Leibler Divergence (KLD) between predicted logits and true labels. The added

regularization term increases the entropy of the predicted distribution, reducing overconfi-

dence and potentially improving uncertainty calibration.

Bayesian Learning and Inference BNNs approximate a posterior distribution over net-

work parameters, capturing prediction uncertainty via random draws from these distribu-

tions:

• Bayes by Backprop (BBP) [97] introduces Monte Carlo gradients, extending the

Gaussian reparameterization trick [98] to directly learn the posterior distribution of

weights through backpropagation.

• Stochastic Gradient Langevin Dynamics (SGLD) [99] injects noise into the Stochas-

tic Gradient Descent (SGD) process via Langevin dynamics, thereby generating sam-

ples that can be used for Monte Carlo estimates of posterior expectations.

• MC Dropout [79] interprets dropout as a Bayesian approximation to a deep Gaussian

process [100]. Multiple stochastic forward passes (with dropout enabled) yield a

distribution of predictions reflecting model uncertainty.

• Stochastic Weight Averaging-Gaussian (SWAG) [101] leverages stochastic weight

averaging [102] to estimate Gaussian posteriors with low-rank and diagonal approx-

imations of network weight covariance.

Post-Hoc Calibration Post-hoc calibration tackles the overconfidence issue of determin-

istic models by adjusting their output distributions after training. The most widely used

approach is Temperature Scaling (TS) [82, 39], which introduces a learned scaling factor

to modulate the “sharpness” of SoftMax or Sigmoid activations, enhancing model calibra-

tion.

Deep Ensembles Ensembles have long been used to boost performance in machine learn-

ing [103] and were first adopted for uncertainty estimation by [80]. This method trains
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Table 2.3: Dataset statistics.

Property Category Dataset # Compounds # Tasks Average LIR(a) Max LIR(a)

Classification

Physiology

BBBP 2,039 1 0.7651 0.7651
ClinTox 1,478 2 0.9303 0.9364
Tox21 7,831 12 0.9225 0.9712

ToxCast 8,575 617 0.8336 0.9972
SIDER 1,427 27 0.7485 0.9846

Biophysics
BACE 1,513 1 0.5433 0.5433
HIV 41,127 1 0.9649 0.9649

MUV 93,087 17 0.9980 0.9984

Regression

Physical Chemistry
ESOL 1,128 1 - -

FreeSolv 642 1 - -
Lipophilicity 4,200 1 - -

Quantum Mechanics
QM7 7,160 1 - -
QM8 21,786 12 - -
QM9 133,885 3(b) - -

(a) LIR stands for “label imbalance ratio”: LIRk ∈ [0.5, 1] = max{npos, nneg}/ntotal.
(b) QM9 dataset contains 12 tasks, but we follow [105, 29] and use only 3 most popular ones (homo,
lumo, and gap).

multiple deterministic models with distinct random seeds and aggregates their predictions.

By exploring various modes in the loss landscape, ensembles are more resilient to noise

and OOD instances [104].

Table 2.2 summarizes the computational overhead of each UQ method. Additional

details are available in section A.3.

2.3.3 Datasets

We validate the above approaches on MoleculeNet [67], a popular suite of molecular prop-

erty datasets spanning quantum mechanics, solubility, toxicity, and more. For classifi-

cation, MUBen incorporates BBBP, ClinTox, Tox21, ToxCast, SIDER, BACE, HIV, and

MUV, all of which are binary-label tasks. The first 5 datasets assess physiological prop-

erties, while the last 3 focus on biophysical endpoints. For regression, MUBen includes

15



ESOL, FreeSolv, Lipophilicity, QM7, QM8, and QM9. The first 3 represent physical

chemistry properties, while the latter 3 examine quantum mechanics targets.

In line with earlier studies [105, 29], we adopt scaffold splitting to better emulate real-

world generalization and reduce the influence of dataset randomness. Scaffold splitting

forces each subset to contain distinct scaffolds, creating a more realistic OOD scenario. For

completeness, we also report results using random splitting. Further dataset information is

provided in section A.1.

2.3.4 Training and Evaluation Protocols

For classification, we use Sigmoid activation with a Binary Cross-Entropy (BCE) loss un-

less otherwise specified. For regression, targets are standardized to a Gaussian distribution

during training and converted back for final evaluation. Uncertainty is modeled by predict-

ing a mean and variance for each data point, with a SoftPlus activation ensuring positive

variance estimates.

Our primary performance metrics are Area Under the Receiver Operating Characteristic

(AUROC) for classification, and Root Mean Square Error (RMSE) and Mean Absolute

Error (MAE) for regression. AUROC is widely used for binary classification. The ROC

curve plots the true positive rate (TPR) against the false positive rate (FPR) at various

decision thresholds t ∈ (0, 1). Given a set of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN), the TPR and FPR are computed as TPR = TP
TP+FN

and FPR = FP
FP+TN respectively. The AUC signifies the likelihood of a randomly selected

positive instance being ranked above a randomly chosen negative instance. This integral

under the ROC curve is calculated as

AUROC =

∫ 1

0

TPR(t)
d

dt
FPR(t)dt (2.6)

and can be approximated using numerical methods.
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For regression tasks, RMSE quantifies the average discrepancy between predicted val-

ues ŷn ∈ R and actual values yn ∈ R for N data points, given by:

RMSE =

√√√√ 1

N

N∑
n=1

(ŷn − yn)2. (2.7)

MAE is another regression metric, measuring the average absolute deviation between

predicted and actual values. It is calculated as:

MAE =
1

N

N∑
i=1

|ŷn − yn|. (2.8)

Uncertainty is evaluated using ECE, NLL, and BS in classification tasks; and Gaussian

NLL and RCE for regression, as described in section 2.2. Unless stated otherwise, we

report results averaged across three independent training runs, and for Deep Ensembles

we fuse predictions before metric computation. These protocols align with established

benchmarks [67, 105, 29].

2.4 Experiments and Analysis

2.4.1 Prediction Performance

Theoretically, inserting UQ methods into the training pipeline does not guarantee better

prediction on i.i.d. datasets. However, since we ensure OOD test points with scaffold

splitting, UQ methods may mitigate the distribution gap, yielding better test results. The

columns AUROC, RMSE, and MAE in Table 2.4, Table 2.5, and Figure 2.2 illustrate the

predictive performance of each method. From the lens of UQ methods (Figure 2.3), the ran-

domness in the initialization and training trajectory of Deep Ensembles explores a broader

range of loss landscapes, which partially addresses the distribution shift issue. MC Dropout

may flatten extreme regression abnormality triggered by OOD features. This phenomenon

is less pronounced for classification due to the (0, 1) output domain. However, other BNNs
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Table 2.4: Classification results. “↑” and “↓” imply that better performance is indicated by a
larger or smaller value, respectively. Text in bold signifies the top-performing UQ method
within each backbone model, and cells in blue indicate the best performance across all
backbone-UQ combinations. “ROC” represents ROC-AUC. Deep Ensembles consistently
outperforms other UQ methods for both property prediction and uncertainty quantification;
MC Dropout and Temperature Scaling also consistently improve UQ performance.

Tox21(a) ToxCast(a) Average Ranking(b)

ROC↑ ECE↓ NLL↓ BS↓ ROC↑ ECE↓ NLL↓ BS↓ ROC↓ ECE↓ NLL↓ BS↓

DNN-RDKit

Deterministic 0.7386 0.0417 0.2771 0.0779 0.6222 0.1168 0.4436 0.1397 25.75 17.25 24.13 22.88
Temperature 0.7386 0.0342 0.2723 0.0773 0.6220 0.1114 0.4882 0.1398 25.75 15.38 21.25 19.88
Focal Loss 0.7374 0.1058 0.3161 0.0871 0.6289 0.1264 0.4389 0.1396 25.88 24.38 22.38 24.00

MC Dropout 0.7376 0.0356 0.2727 0.0763 0.6248 0.1093 0.4319 0.1358 26.50 13.00 19.38 18.63
SWAG 0.7364 0.0438 0.2793 0.0790 0.6207 0.1175 0.4441 0.1400 26.38 18.50 25.63 23.50
BBP 0.7243 0.0422 0.2847 0.0814 0.6020 0.1443 0.4673 0.1510 22.75 19.13 19.38 21.38

SGLD 0.7257 0.1192 0.3455 0.0978 0.5319 0.3054 0.6685 0.2378 27.75 26.00 28.88 27.88
Ensembles 0.7540 0.0344 0.2648 0.0746 0.6486 0.0900 0.4008 0.1292 20.00 7.13 11.75 13.13

ChemBERTa

Deterministic 0.7542 0.0571 0.2962 0.0812 0.6554 0.1209 0.4313 0.1330 15.63 17.38 18.88 19.38
Temperature 0.7542 0.0424 0.2744 0.0792 0.6540 0.1067 0.4817 0.1313 15.88 12.00 13.88 15.38
Focal Loss 0.7523 0.0969 0.3052 0.0845 0.6442 0.1197 0.4243 0.1346 17.63 20.13 17.88 20.63

MC Dropout 0.7641 0.0423 0.2697 0.0744 0.6624 0.1069 0.4070 0.1276 12.50 10.75 10.63 10.00
SWAG 0.7538 0.0592 0.3008 0.0818 0.6556 0.1202 0.4305 0.1327 16.13 19.50 21.38 20.38
BBP 0.7433 0.0459 0.2765 0.0780 0.5814 0.1276 0.4545 0.1469 20.88 19.00 16.00 19.50

SGLD 0.7475 0.0504 0.2784 0.0795 0.5436 0.2238 0.5602 0.1881 21.13 19.88 19.13 18.63
Ensembles 0.7681 0.0440 0.2679 0.0750 0.6733 0.1037 0.3986 0.1258 12.38 13.00 11.63 12.25

GROVER

Deterministic 0.7808 0.0358 0.2473 0.0694 0.6587 0.1043 0.4091 0.1298 11.63 11.50 8.88 9.88
Temperature 0.7810 0.0291 0.2439 0.0686 0.6496 0.1424 0.4612 0.1424 12.63 8.88 7.50 9.25
Focal Loss 0.7779 0.1148 0.3052 0.0811 0.6359 0.1221 0.4365 0.1383 15.00 23.38 21.50 22.25

MC Dropout 0.7817 0.0346 0.2455 0.0689 0.6615 0.1009 0.4042 0.1288 11.25 10.50 7.63 8.63
SWAG 0.7837 0.0360 0.2482 0.0689 0.6603 0.1060 0.4114 0.1301 9.13 11.63 8.88 8.38
BBP 0.7697 0.0438 0.2552 0.0711 0.5995 0.1731 0.5090 0.1660 16.75 22.00 14.75 15.88

SGLD 0.7635 0.0402 0.2558 0.0716 0.5542 0.2712 0.6194 0.2139 18.75 18.63 15.25 15.63
Ensembles 0.7876 0.0316 0.2411 0.0675 0.6646 0.1034 0.4061 0.1290 8.50 8.13 5.38 6.88

Uni-Mol

Deterministic 0.7895 0.0454 0.2601 0.0716 0.6734 0.1020 0.3983 0.1274 11.50 15.50 16.13 13.88
Temperature 0.7896 0.0346 0.2483 0.0704 0.7028 0.1456 0.4566 0.1355 11.00 12.00 13.13 12.75
Focal Loss 0.7904 0.0972 0.2899 0.0785 0.6934 0.1227 0.4079 0.1284 10.00 23.50 19.38 20.50

MC Dropout 0.7891 0.0480 0.2628 0.0726 0.6833 0.1074 0.4015 0.1274 12.88 19.88 19.25 17.25
SWAG 0.7842 0.0593 0.2994 0.0728 0.6870 0.1085 0.4005 0.1271 10.13 22.13 22.25 18.25
BBP 0.7932 0.0396 0.2520 0.0703 0.6273 0.1296 0.4522 0.1456 12.13 17.00 15.50 16.25

SGLD 0.7887 0.0433 0.2569 0.0684 0.5700 0.1953 0.5207 0.1717 14.75 18.13 18.88 14.50
Ensembles 0.8052 0.0332 0.2389 0.0662 0.6841 0.0953 0.3877 0.1247 5.13 8.88 7.63 6.50

TorchMD-NET(c) 0.7793 0.0409 0.2614 0.0708 0.6540 0.1546 0.4424 0.1396 - - - -
GIN(c) 0.6829 0.0634 0.3268 0.0840 0.5752 0.1381 0.4835 0.1477 - - - -

(a) The “Tox21” and “ToxCast” columns present metric scores on representative exemplar datasets, highlighting the
trends observable across all datasets.
(b) The “Average Ranking” columns provide the rank of each model’s UQ metrics against all other backbone-UQ
combinations averaged from all classification datasets; smaller number indicates better performance.
(c) We report the results from the best-performing UQ method—Deep Ensembles for TorchMD-NET and GIN.
These backbones are not ranked together with the primary benchmark.

18



Table 2.5: The regression outcomes for property prediction and uncertainty quantification,
where lower scores are preferable, cover two example datasets along with the average rank-
ing. Similar to classification, Deep Ensembles consistently outperforms other methods.
Specifically within the context of regression, BBP and SGLD demonstrate exceptional ca-
pabilities in estimating uncertainty, despite not consistently improving property prediction
outcomes.

Lipophilicity QM9 Average Ranking

RMSE MAE NLL CE RMSE MAE NLL CE RMSE MAE NLL CE

DNN-RDKit

Deterministic 0.7575 0.5793 0.6154 0.0293 0.01511 0.01012 -3.379 0.04419 16.67 15.67 11.33 10.50
MC Dropout 0.7559 0.5773 0.9071 0.0341 0.01480 0.01000 -3.526 0.04327 15.17 15.17 11.33 10.67

SWAG 0.7572 0.5823 0.7191 0.0308 0.01524 0.01019 -3.284 0.04495 18.00 17.67 14.00 12.50
BBP 0.7730 0.5938 0.7578 0.0305 0.01534 0.01025 -3.347 0.04452 21.17 20.50 10.33 7.33

SGLD 0.7468 0.5743 0.2152 0.0090 0.01958 0.01437 -3.335 0.00702 19.83 19.33 6.83 1.83
Ensembles 0.7172 0.5490 0.6165 0.0322 0.01430 0.00956 -3.602 0.04362 11.50 11.17 6.33 8.67

ChemBERTa

Deterministic 0.7553 0.5910 1.2368 0.0362 0.01464 0.00916 -2.410 0.05468 17.83 16.67 18.83 14.67
MC Dropout 0.7142 0.5601 0.8178 0.0349 0.01412 0.00880 -3.150 0.05133 14.33 13.83 15.00 13.67

SWAG 0.7672 0.5992 1.5809 0.0395 0.01477 0.00925 -2.170 0.05535 19.33 18.50 20.33 15.83
BBP 0.7542 0.5869 0.4419 0.0279 0.01443 0.00928 -2.593 0.05399 17.67 18.50 10.83 9.00

SGLD 0.7622 0.5982 0.8719 0.0355 0.01530 0.01012 -3.758 0.03378 19.83 20.50 9.50 8.50
Ensembles 0.7367 0.5763 0.9756 0.0360 0.01397 0.00868 -2.876 0.05425 14.83 13.83 14.67 12.67

GROVER

Deterministic 0.6316 0.4747 2.1512 0.0478 0.01148 0.00678 -0.787 0.06206 10.67 11.67 17.67 16.00
MC Dropout 0.6293 0.4740 2.0526 0.0476 0.01140 0.00676 -1.100 0.06161 9.33 11.17 16.00 14.33

SWAG 0.6317 0.4750 2.3980 0.0485 0.01156 0.00678 -0.477 0.06252 12.33 13.33 20.33 17.83
BBP 0.6481 0.5058 0.0789 0.0196 0.01179 0.00700 -1.885 0.05909 14.17 15.67 7.67 4.00

SGLD 0.6360 0.4984 0.0544 0.0215 0.01359 0.00878 -3.785 0.02911 14.83 15.17 4.67 2.67
Ensembles 0.6250 0.4693 1.6046 0.0460 0.01143 0.00667 -1.028 0.06199 8.17 8.67 13.50 14.00

Uni-Mol

Deterministic 0.6079 0.4509 0.8975 0.0425 0.00962 0.00538 0.014 0.06637 5.83 4.83 16.67 21.17
MC Dropout 0.5983 0.4438 1.3663 0.0440 0.00961 0.00535 -0.251 0.06615 4.00 3.17 16.67 21.33

SWAG 0.6026 0.4476 1.0101 0.0453 0.00969 0.00541 -0.462 0.06597 6.33 6.17 19.67 22.67
BBP 0.6044 0.4469 0.0679 0.0306 0.00952 0.00544 -2.959 0.06179 3.17 3.00 4.33 10.33

SGLD 0.6040 0.4554 0.1565 0.0329 0.00950 0.00546 -4.209 0.04593 2.50 4.00 2.50 9.17
Ensembles 0.5809 0.4266 0.6450 0.0438 0.00948 0.00526 -0.319 0.06629 2.50 1.83 11.00 20.67

TorchMD-NET(a) 1.0313 0.8196 0.8619 0.0195 0.00860 0.00464 2.262 0.06868 - - - -
GIN(a) 0.8071 0.6515 0.3241 0.0020 0.01295 0.00814 -3.521 0.04997 - - - -

(a) We report the results from the Deep Ensembles UQ method for TorchMD-NET and GIN.
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do not exhibit the same advantage. SWAG, while similar to MC Dropout w.r.t. training,

might intensify training data overfitting due to the additional steps taken to fit the parameter

distribution. The stochastic sampling employed by BBP and SGLD complicates network

training and may impact the prediction performance as a result. Looking from the perspec-

tive of primary backbones (Figure 2.2), Uni-Mol secures the best prediction performance

for both classification and regression. The superior molecular representation capability of

Uni-Mol is attributed to the large network size, the various pre-training data and tasks, and

the integration of results from different conformations of the same molecule. When con-

trasting DNN, ChemBERTa, and GROVER, it becomes pronounced that the expressiveness

of the molecular descriptors varies for different molecules/tasks. Moreover, pre-trained

models do not invariably surpass heuristic features when integrated with UQ methods. Se-

lecting a model attuned to the specific task is advised over an indiscriminate reliance on

“deep and complex” networks.
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Figure 2.2: Mean Reciprocal Rank (MRR) of the backbone models.

2.4.2 Uncertainty Quantification

Figure 2.2 depict the uncertainty estimation performances via ECE, NLL, BS, and RCE

columns. One discernible trend from Figure 2.2 is the consistent performance enhance-

ment from Deep Ensembles even when the number of ensembles is limited, such as the

QM9 case. MC Dropout also exhibits a similar trend, albeit less pronounced. Despite a

possible compromise in prediction accuracy, TS emerges as another method that almost
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Figure 2.3: MRR of the UQ methods.

invariably improves calibration. Figure 2.4 shows that deterministic prediction tends to be

over-confident, and TS mitigates this issue. An exception is noted in the ToxCast dataset,

likely attributable to the distribution deviation between calibration and test datasets. How-

ever, it is susceptible to calibration-test alignment. If the correlation is weak, TS may

worsen the calibration. In contrast, Focal Loss does not work as impressively for binary

classification, which is due to parameters over-regularization that diminishes the prediction

sharpness to an unreasonable value, a conjecture verified by the “S”-shaped calibration

curves in Figure 2.4. Although limited in classification efficacy, both BBP and SGLD

deliver commendable performance in predicting regression uncertainty. Yet, their incon-

sistent improvement of RMSE and MAE implies a greater influence on variance prediction

than the mean. SGLD’s tendency to “play safe” by predicting larger variances, while the

deterministic method is prone to over-confident by ascribing small variances even to its

inaccurate predictions. In addition, we do not observe a better correlation between SGLD’s

error and variance. We assume that the noisy training trajectory prevents SGLD and BBP

from sufficiently minimizing the gap between the predicted mean and true labels, thus en-

couraging them to maintain larger variances to compensate for the error.

Figure 2.2 indicates that Uni-Mol exhibits subpar calibration, particularly for regres-

sion. Comparing Uni-Mol, ChemBERTa, and DNN in Figure 2.5, we notice that larger

models such as Uni-Mol are more confident in their results, as illustrated by their smaller

variances and larger portion of (std, error) points exceeding y = kx. Apart from the in-
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(a) Uni-Mol on SIDER
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(b) Uni-Mol on Tox21
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(c) DNN on SIDER
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(d) DNN on Tox21

Figure 2.4: The calibration plot of Deterministic, Temperature Scaling and Focal Loss.

herent susceptibility of larger models to overfitting, such phenomenon for Uni-Mol could

also be attributed to shared structural features in 3D conformations in the training and test

molecules that remain unobserved in simpler descriptors [29]. While this similarity benefits

property prediction, it also potentially misleads the model into considering data points as in-

distribution, thereby erroneously assigning high confidence. Overall, our findings broadly

support the notion that models with lower expressiveness tend to exhibit better calibration.

Therefore, the selection of an appropriate UQ method is more critical for enhancing the

calibration of larger models. This is particularly evident from the larger discrepancies in

calibration errors between the Deterministic approach and the most effective UQ method

for Uni-Mol compared to DNN.
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(a) DNN on Lipo (b) DNN on FreeSolv

(c) ChemBERTa on Lipo (d) Uni-Mol on FreeSolv

Figure 2.5: The absolute error between the model-predicted mean and true labels against
the predicted standard deviation. We compare the performance of SGLD with the determin-
istic prediction on different backbones and datasets. The “y = kx” lines indicate whether
the true labels lie within the k-std range of the predicted Gaussian. Also, a model is per-
fectly calibrated when its output points are arranged on an “y = kx” line for an arbitrary
k. Notably, SGLD is observed to generate a larger variance for OOD samples, which tends
to correspond more closely with the prediction errors on average.
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Figure 2.6: MRRs of TorchMDNet and Uni-Mol on datasets grouped by dataset property
categories. MRR calculations are confined to results from these two backbones. Only
relative values matter. TorchMDNet is comparible to Uni-Mol on Quantum Mechanics
properties, where it is pre-trained on, but is outperformed by Uni-Mol on all other property
categories.
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Table 2.6: Performance with frozen backbone weights and on random split datasets com-
pared with the original scores in Table 2.4 and Table 2.5. The result is calculated as
(new−original)/original and is macro-averaged over all datasets, backbones and UQ meth-
ods. The performance of the frozen backbone is significantly worse than the original, while
the model performs better on the randomly split (in-domain) test set.

Classification Regression

ROC-AUC (%)↑ ECE (%)↓ NLL (%)↓ Brier Score (%)↓ RMSE (%)↓ MAE (%)↓ NLL (%)↓ CE (%)↓

Frozen Backbone -24.07 145.13 53.43 88.98 78.60 92.40 58.18 -46.06
Random Split 13.25 -35.19 -33.87 -37.35 -26.34 -31.36 -53.87 19.06

2.4.3 TorchMD-NET and GIN

Our analysis also encompasses TorchMD-NET and GIN, two additional backbone mod-

els excluded from the primary benchmark due to their limited capabilities. As presented

in the tables and Figure 2.6, TorchMD-NET’s performance is on par with Uni-Mol when

predicting quantum mechanical properties but falls short in others. This outcome aligns

with expectations, given that TorchMD-NET’s architecture is tailored specifically for pre-

dicting quantum mechanical properties [92]. Moreover, it is pre-trained on the relatively

niche dataset PCQM4Mv2 with only the denoising objective, which might be suitable for

molecular dynamics but limited for other properties. In contrast, Uni-Mol stands out as

a versatile model, benefiting from diverse pre-training objectives that ensure superiority

across various tasks. On the other hand, GIN’s performance is consistently inferior to other

models including DNN, with examples presented in Table 2.4 and Table 2.5, likely due

to the limited expressiveness of 2D graphs and the GNN architecture when pre-training is

absent.

2.4.4 Frozen Backbone and Randomly Split Datasets

Table 2.6 demonstrates a notable drop in prediction performance when backbone weights

are fixed; and random splits outperform scaffold splits. This is consistent with intuition: if

backbone models serve solely as feature extractors instead of a part of the trainable predic-

tors, they are less expressive for downstream tasks. Additionally, in-distribution features
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tend to be more predictable. An interesting exception emerges in regression calibration

error, where frozen backbones perform better and random splits score lower. Upon ex-

amining the predicted values, we note that predictions for random splits exhibit a sharper

distribution, i.e., smaller σ̂. This suggests that the models are more confident in regress-

ing in-distribution data, aligning with our previous observation for Uni-Mol. Conversely,

frozen backbones are less prone to overfitting due to their constrained expressiveness. This

behavior underscores the original models’ capability to distinguish between in-distribution

and OOD features and assign confidence scores with precision.

2.5 Conclusion

In [41] we present MUBen, a benchmark designed to evaluate a variety of UQ methods

across different categories, using backbone models that employ various descriptors for mul-

tiple molecular property prediction tasks. The findings indicate that Deep Ensembles con-

sistently enhance performance compared to the deterministic baseline, albeit at a substantial

computational cost. For classification tasks, TS and MC Dropout are straightforward yet

effective approaches. Conversely, for regression, BBP and SGLD appear more suitable in

estimating uncertainty, although they may lead to a decrease in prediction accuracy, par-

ticularly with smaller backbone models. Among the different backbones, Uni-Mol stands

out due to its effective utilization of 3D molecular conformations, which, while highly

expressive, is also prone to overconfidence. Other backbone models, leveraging different

descriptors, offer advantages under varying conditions and should be chosen based on the

specific requirements of the use case.

Given the rapid advancements in molecular representation learning and UQ methods,

MUBen cannot encompass all possible combinations, forcing us to focus on a curated

selection of representative methods. Furthermore, we use coarse-grained hyperparameter

grids to maintain experimental feasibility, which makes MUBen, while indicative of trends,

might not present the best possible results. We remain committed to refining MUBen and
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welcome contributions from the broader community to enhance its inclusivity and utility

for research in this field and related domains.
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CHAPTER 3

LANGUAGE MODEL UNCERTAINTY QUANTIFICATION

3.1 Introduction

In the domain of NLP, autoregressive LLMs have increasingly permeated real-world appli-

cations, including high-stakes areas such as medical diagnosis [106, 107, 45], where errors

can carry severe consequences. Although LLMs boast powerful generalization due to their

vast and diverse pre-training data, they can falter when confronted with tasks or domains

insufficiently represented in their training. Our work with Minesweeper [46] illustrates

this point: once the model encounters significant distribution shifts, its reasoning degrades

sharply, often defaulting to reiterations of seen examples or training data rather than gen-

uinely adapting to new instructions [46]. Compounding this challenge is the phenomenon

of hallucination [108, 109], wherein LLMs produce responses that appear convincing but

contain factual inaccuracies. Left unchecked, such behaviors pose risks in settings where

humans may unwittingly rely on the model’s output for critical decisions.

Consequently, reliable UQ becomes indispensable to gauge whether a model is over-

stepping its bounds of competence or generating spurious information. Unlike the simpler

setting of discriminative autoencoding molecular PLMs discussed in the previous chapter,

where established UQ techniques apply with minimal adjustments, LLMs generate open-

ended token sequences in a vast language space, complicating the direct use of classical

UQ methods. Tokens within a response are highly interdependent, and the autoregressive

decoding process seldom aligns with the assumptions of traditional UQ frameworks [78,

110]. As a result, despite growing interest in confidence estimation for natural language

generation, effective and efficient UQ methods tailored to autoregressive architectures re-

main limited, underscoring an urgent need for novel, robust solutions.
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Earlier attempts at UQ for autoregressive models primarily involved cumulative token-

wise probability or entropy calculations [111, 110], including length-normalized variants

[112]. Nevertheless, these methods often conflated semantic and auxiliary tokens, leading

to inefficiency and unreliability for long reasoning sequences. Addressing the intractability

of the full reasoning space, several works approximated it through semantic representations

of multiple model-generated outputs [110, 113, 114, 115, 116, 117]. Techniques such as

semantic entropy [110], augmented-prompt ensembles [114], and input clarification [113]

have shown promise but often incur high computational overhead due to multiple model

inferences or reliance on external encoders.

Another direction explores isolating critical tokens in reasoning sequences, assessing

their semantic contribution to the final output [118, 119]. Methods like SAR [118] and

CSL [119] separate auxiliary from semantically significant tokens but either require mul-

tiple forward passes or large validation sets to select attention heads, complicating their

practicality for extended outputs. Further research elicits explicit uncertainty statements

from the model itself [120, 121, 122, 123], which is intuitive but often demands additional

training or domain-specific fine-tuning, thus limiting broad applicability.

To address these gaps, we propose UQAC, a novel, model-agnostic framework that

leverages white-box access to autoregressive language models. UQAC capitalizes on a

simple yet powerful insight: not all tokens in a reasoning sequence contribute equally to

the final answer. This aligns with prior findings on attention mechanisms in sequence

modeling [124, 125, 13, 118, 119]. Concretely, UQAC constructs an attention chain by

backtracking from the answer tokens through their attention weights to earlier tokens (Fig-

ure 3.1), isolating the most critical reasoning steps (subsection 3.3.1). Peripheral tokens

are then pruned based on semantic similarity to the final answers (subsection 3.3.2) and

probability thresholds (subsection 3.3.3), yielding a manageable set of key reasoning paths

whose marginal probabilities can be computed directly.

Compared to existing UQ methods, UQAC stands out due to its:
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Q : 1 + 1 = ? A : A wise man once said “ 1 + 1 = 2 ” . Therefore 1 + 1 = 2 . The answer is \boxed{ 2 } . 

Instruction

Tokens

Answer

Tokens

Reasoning

Tokens

0.7 0.2

0.48

0.2 0.4

0.8

0.60.4
0.50.3

Step 1 Step 2 Step 3

{2}

{2, answer}

{2, answer}

{2, 1, . (excluded: below threshold)}

{2, 1}

{A (excluded: stop word), ? (instruction), 1 (instruction), 1 (instruction)}

Step 4

∅Source Tokens

Target Tokens

Figure 3.1: Construction of the attention chain xattn with a 3-step attention backtrack-
ing procedure. Arrows point from source tokens to target tokens with the top-2 attention
weights (displayed on the arrows), i.e., ltgt = 2. Solid lines indicate valid target tokens,
while dashed lines indicate invalid ones for various reasons explained below.

• Applicability: Compatible with any white-box autoregressive LLM, requiring nei-

ther additional training nor exhaustive hyperparameter searches.

• Scalability: Efficiently manages arbitrarily long outputs by focusing on only the

most influential tokens.

• Efficiency: Integrates seamlessly with autoregressive generation without needing

extra sampling or external encoders.

• Calibration: Produces bounded, interpretable confidence estimates ranging from 0

to 1.

Our experiments across multiple datasets and model architectures show that UQAC

substantially improves calibration relative to comparable methods, all within a similar

computational budget (section 3.5). Code and data for all experiments are available at

https://github.com/Yinghao-Li/UQAC to facilitate reproducibility and further research.

3.2 Problem Definition

Consider an instruction sequence xinstr ∈ VLinstr ≜ [x1, x2, . . . , xLinstr
] of length Linstr, where

V is a vocabulary set. A language modelM generates a response sequence xresp ∈ VLresp

of length Lresp, which can be split into a Chain-of-Thought (CoT; [20]) reasoning sequence

xcot ∈ VLcot and the final answer xans ∈ VLans . We write xresp = xcot ⊕ xans (Figure 3.1),
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where ⊕ represents “concatenation”, disregarding any tokens after xans.

Our objective in UQ is to determine the model’s confidence in its final answer, denoted

by PM(xans|xinstr). Directly using the joint probability PM(xresp|xinstr) = PM(xans,xcot|xinstr)

is not suitable, as the reasoning sequence xcot typically includes both semantically crucial

tokens needed for deriving the answer and auxiliary tokens that primarily serve syntactic

or coherence purposes. These auxiliary tokens often make up the bulk of xcot yet have

minimal impact on the actual answer semantics. Consequently, using PM(xresp|xinstr) as a

confidence measure can be both biased and unintuitive: the probability tends to decrease

monotonically with the length of the response, leading to small joint probabilities that are

difficult to interpret. Moreover, conditioning the final answer’s confidence on xcot is unnec-

essary when the primary concern is the correctness and trustworthiness of the final answer

itself. Therefore, this confidence formally is expressed as

PM(xans|xinstr) =
∑
xcot

PM(xans|xcot,xinstr)PM(xcot|xinstr), (3.1)

where xcot ranges over all possible reasoning sequences in VLcot . However, the summation

is computationally intractable: even when the vocabulary dimension is on the order of

10,000, the space grows exponentially with the sequence length Lcot, which can reach into

the hundreds. Accordingly, the main challenge in LLM UQ is to construct an accurate

approximation P̃M ≈ PM(xans|xinstr) that faithfully reflects the model’s confidence,

without explicitly summing over all possible reasoning sequences.

In the following, we focus on a single instance of a single model and thus omit the

model indicator M and the instance index. Table B.1 summarizes the notations used

throughout.
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3.3 Uncertainty Quantification with Attention Chain

3.3.1 Attention Chain

We first apply attention backtracking to identify semantically crucial tokens xattn ⊏ xcot,

, where ⊏ is defined as a “proper (not necessarily consecutive) subsequence”, i.e., x1 ∈

VN ⊏ x2 ∈ VM ↔ ∃1 ⩽ i1 < · · · < iN ⩽ M s.t. x1,[k] = x2,[ik],∀k ∈ N[1,N ]. Attention

backtracking itself is an iterative procedure governed by a function f : xsrc 7→ xtgt, which

selects a target subsequence xtgt ⊏ xcot deemed most influential for predicting the source

tokens xsrc ⊏ xresp, based on the model’s attention weights. We impose a buffer size Ltgt ≜

max |xtgt| that bounds the number of tokens selected at each step. The process starts with

x
(0)
src = xans and x

(0)
attn = ∅. At each iteration z, we compute x

(z)
tgt = f(x

(z−1)
src ) and update

x
(z)
src = x

(z)
tgt . This continues until no new tokens are extracted from xcot. The final sequence

xattn is then the concatenation of all target sequences xattn ≜ x
(0)
tgt ⊕ · · · ⊕ x

(Z)
tgt , assuming

f is applied Z times. xattn serves as a compact semantic approximation of the original

reasoning chain xcot. Figure 3.1 provides an illustration of attention backtracking. Each

step of f consists of three stages: 1) attention weight processing; 2) attention head selection

and aggregation; and 3) target token identification, detailed in the following paragraphs.

Attention Weight Processing For a sequence of length T , LLMs employ self-attention

[13] to compute a weight for each token in the prefix x⩽T (which includes the instruction,

i.e., xinstr ⊏ x⩽T ) to gauge its contribution to predicting the next token xT+1. In an L-layer,

H-head Transformer modelM, the attention weight vector for token xT in the l-th layer

and h-th head is defined as

α
(l,h)
T ∈ [0, 1]T = softmax(

K
(l,h)
T q

(l,h)
T√

dk
), (3.2)

where q(l,h)
T ∈ Rdk is the query vector for xT , K(l,h)

T ∈ RT×dk is the key matrix for the prefix

x⩽T , and dk is the dimensionality of the key vectors. This attention vector determines how
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much semantic information from x⩽T is transferred to xT+1, thereby serving as an indicator

of the relative importance of each token in the prefix.

However, LLMs often overemphasize tokens that are close to position T , irrespective

of their semantic relevance. To mitigate this bias, we reweight the most recent C attention

weights by multiplying them with a sequence of decreasing factors γ ∈ [0, 1]C . Moreover,

since some LLMs tend to assign disproportionately high attention to the instruction’s BOS

token, we reset that particular attention weight to zero. After these modifications, the

attention vector is renormalized as follows (with layer and head indices omitted for brevity):

αT,[T−C:T ] ← γ ⊙αT,[T−C:T ]; αT,[1] ← 0; α′ =
α∑
α
, (3.3)

where “⊙” denotes element-wise multiplication and the square brackets indicate a slice.

Please refer to subsection B.2.1 for further discussion on the reweighting factors γ.

Attention Head Selection and Aggregation Different attention heads typically capture

distinct aspects of the input sequence. Not all attention heads contribute equally when

predicting xT+1, making it crucial to identify the most informative ones for discerning

semantically significant tokens [119]. To enable a lightweight, training-free selection pro-

cess, we leverage attention entropy, defined as H(α) = −
∑

α logα, which quantifies

the uncertainty of the attention distribution. A higher entropy value indicates a more uni-

form distribution, suggesting a less informative attention head. Consequently, we select the

top-K heads with the lowest entropy:

(l, h)T,k = argmink
(l,h)

H(α′(l,h)
T ); k ∈ N[1,K], (3.4)

where the operator argmink returns the index corresponding to the k-th smallest entropy

value, and the subscript T emphasizes that the computation is performed independently

for each token xT . Subsequently, we aggregate the selected attention weights into a single
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vector α∗
T ∈ [0, 1]T via element-wise maximization:

α∗
T,[t] = max

k
α
′(l,h)T,k

T,[t] ; t ∈ N[1,T ]. (3.5)

Due to the maximization,
∑

α∗
T ∈ (1, T ], i.e., α∗

T no longer resides on a probability sim-

plex.

Target Token Identification Let ts ∈ N[1,T ] for s ∈ N[1,Lsrc] denote the positions of

source tokens within the source token set xsrc ≜ {xts}s (with step index ·(z) omitted). Here

we treat xsrc and xtgt as sets for convenience. Given the set of attention weights {α∗
ts}s

corresponding to xsrc, our goal is to construct xtgt by selecting the top-Ltgt tokens based

on their cumulative attention weights. For each token position t ∈ N[1,T ], we compute a

cumulative attention weight and gather the target set as

ϕ[t] =
Lsrc∑
s=1

α∗
ts,[t];

xtgt = {xt | ϕ[t] > θ; I(xt /∈ Vstop); t ∈ {argmaxk
t

ϕt}
Ltgt
k=1}.

(3.6)

where θ is a threshold to filter out weakly attended tokens, and the operator argmaxk

returns the indices corresponding to the k-th largest cumulative weight.

Finally, we define the step-wise backtracking function f as the sequential composition

of Equation 3.2–Equation 3.6. The attention chain xattn is generated by iteratively applying

f ; at each step z, a new target set is produced, and the final attention chain is the concate-

nation of all these target sets, as discussed above.

When transferring the target set xtgt to serve as the new source xsrc for the next iteration

(i.e., updating x
(z)
src = x

(z)
tgt for iteration z+1), it is important to differentiate between token

generation and token attention. During token generation, a new token xT+1 is produced

based on the input token xT , with the attention computation operating between xT and the

preceding context x⩽T . In contrast, during token attention, the projected key and value
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vectors are computed directly from the token xt as it is fed into the model.

Suppose that xT+1 is identified as a semantically crucial token and we wish to trace

back the tokens that contributed to its prediction via attention backtracking. In this case,

we focus on the attention vectors generated during the token’s generation.

αT ∈ [0, 1]T = softmax

(
KTqT√

dk

)
. (3.7)

Assume further that a token xt ∈ xtgt is the most attended token in the target set, i.e.,

αT,[t] = max
i

αT,[i] = max
i

kT
T,iqT , (3.8)

where kT,i ≜ KT,[i] denotes the i-th key vector in the key matrix KT corresponding to

token xi. In this scenario, xt serves as a model input (generated from xt−1) rather than an

output.

Consequently, when propagating the target set to the next iteration, the indices are

shifted back by one position x
(z)
src = {xi−1 | xi ∈ x

(z)
tgt }. The same index-shifting prin-

ciple applies to the initial source set x(0)
src = {xi−1 | xi ∈ xans}.

3.3.2 Similarity-Based Filtering

Since the backtracking function f does not explicitly regulate the attention chain length

Lattn, the chain may be long, complicating the formation of a tractable reasoning space.

Therefore, we employ a similarity-based filtering strategy for finer control. Given the an-

swer tokens xans and the attention chain xattn, we compute the similarity between each

token pair (xm, xn), where xm ⊏ xans and xn ⊏ xattn, by applying cosine similarity to their
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last-layer output logits hm and hn. We calculate the similarity vector w ∈ [−1, 1]Lattn as:

sim(xm, xn) =
hT

mhn

∥hm∥∥hn∥
,

w[n] =
∑
m

sim(xm, xn), m ∈ N[1,Lans], n ∈ N[1,Lattn].
(3.9)

We retain the tokens with the top-L′
attn weights to form the filtered sequence x′

attn ⊑ xattn:

x′
attn = [xattn,[n1], . . . , xattn,[ni], . . . ] s.t. w[ni] > 0; ni ∈ {argmaxk w}L

′
attn

k=1, (3.10)

where the threshold of 0 excludes tokens with negative similarity scores.

Our similarity calculation is practical and efficient as it leverages model M’s hidden

states h rather than external Sentence-BERT embeddings [126, 110, 116]. Because these

hidden states are produced “for free” during autoregressive decoding, no additional com-

putational overhead is incurred. In contrast, extracting Sentence-BERT embeddings would

require multiple extra forward passes through a separate model that employs a different

vocabulary and tokenization scheme. Moreover, due to the autoregressive nature of M,

the hidden states corresponding to the same token at different positions are not necessarily

identical:

hm ̸= hn and 0 < hT
mhn < 1, ∀m,n s.t. xm = xn,m ̸= n, (3.11)

This property helps reduce the risk of inadvertently filtering out short indicator tokens, such

as “yes”, “no”, or multiple-choice options, when relying on external embeddings.

3.3.3 Model Confidence

Using the attention chain xattn and its filtered version x′
attn, we first define two confidence

approximations in Equation 3.1 based on the joint probabilities of the attention chain and

answer tokens: 1) attention approximation P̃M,attn ≜ P (xans,xattn|xinstr); 2) similarity
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approximation P̃M,sim ≜ P (xans,x
′
attn|xinstr). Since x′

attn ⊑ xattn, we have P̃M,sim ≥

P̃M,attn. Both approximations can be viewed as indicators of the model’s confidence in the

critical semantics captured by the final answer xans. By marginalizing out the filtered atten-

tion chain x′
attn in P̃M,sim, we obtain 3) answer approximation P̃M ≜ P (xans|xinstr), which

more directly captures the model’s confidence in xans alone. The challenge is to reduce the

approximated reasoning space VL′
attn to a manageable subset S so that the summarization in

P̃M =
∑

x′
attn∼S

P (xans,x
′
attn|xinstr) (3.12)

remains computationally feasible. Approximating xcot by x′
attn significantly reduces the

token count, and we constrain L′
attn ≤ 10. Furthermore, language models typically assign

very high probabilities (e.g., > 0.99) to the selected tokens; hence, substituting a chosen to-

ken x′
attn,[i] with any other candidate x′

attn,[i] ̸= x′
attn,[i] often results in a negligible joint prob-

ability, i.e., P
(
xans,x

′
attn,[\i], x′

attn,[i] ̸= x′
attn,[i]|xinstr

)
≈ 0. Consequently, we only consider

alternative tokens that exceed a 0.01 probability threshold, and we alter just one token at a

time while keeping the others unchanged. In our experiments, this yields on average only

six such candidates per position (excluding x′
attn), so E[|S|] = 7. Although multiple forward

passes are still required, all elements in S are independent and can be evaluated without any

recurrent or sequential dependencies, in contrast to Self-Consistency approaches.

3.4 Experiment Setup

3.4.1 Datasets and Models

We evaluate our approach using three widely recognized reasoning datasets that span var-

ious domains, including mathematical problem solving, logical reasoning, and common-

sense reasoning. Only test partitions of the datasets are used for evaluation.

• GSM8K [50]: A dataset comprising 8,792 (7,473 for training and 1,319 for test)

high-quality grade school math word problems that require multi-step reasoning.
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Each problem includes a question and a detailed, step-by-step solution.

• MATH [51]: A collection of 12,500 (7,500 for training and 5,000 for test) challeng-

ing competition-level math problems covering subjects such as algebra, geometry,

calculus, and more. Each problem is paired with a detailed solution.

• BIG-Bench Hard (BBH) [127, 128]: A subset of BIG-Bench consisting of 23 tasks

identified as particularly challenging for LLMs, summarizing to 6,511 test instances

in total. These tasks span domains such as logical reasoning, mathematics, and com-

monsense reasoning. In addition to providing the correct answers, BBH includes

detailed CoT reasoning annotations for each question, thereby enabling the evalua-

tion of both final answers and intermediate reasoning processes.

We evaluate 9 instruction-tuned white-box SOTA LLMs spanning 1B–9B parameters:

Llama-3.2-1B and 3B, and Llama-3.1-8B [129]; gemma-2-2B and 9B [130]; Qwen2.5-

1.5B, 3B, and 7B [131], and DeepSeek-R1-Distill-Llama-8B [25]. These models generally

cover the most widely adopted instruction-tuned LLMs on the smaller side in practical use

cases.

For the mathematical reasoning tasks on GSM8K and MATH, we employ a zero-shot

prompting strategy without additional formatting instructions, ensuring that models gener-

ate responses directly from the input questions. In most cases, the answers from all models

are straightforwardly extractable. However, gemma-2 models require additional guidance;

they are explicitly instructed to enclose their final answers within a \boxed{} wrapper

to facilitate easier extraction. For BBH, we utilize 3 provided in-context examples, sup-

plemented with explicit instructions and modified prompts. These modifications direct the

models to encapsulate their final answers within the \boxed{} wrapper, ensuring consis-

tent and reliable answer extraction across the dataset. During our experiments, we set the

maximum sequence length to 1,024 tokens for GSM8k and MATH, and to 1,536 tokens

for BBH to accommodate the in-context examples in the latter dataset. For DeepSeek-R1,

we further extend this limit by an additional 512 tokens to incorporate the “deep thinking”
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tokens. Please check section B.3 for additional details about dataset processing.

3.4.2 Baselines

We compare the three variants of our proposed method, UQAC, namely P̃M,attn, P̃M,sim, and

P̃M, against a diverse set of baselines. These baselines are selected to cover a broad spec-

trum of uncertainty quantification techniques, incorporating both token-level and response-

level approaches. In particular, we consider the following methods:

1. PM(xans|xcot,xinstr): The joint conditional probability of the answer, conditioned on

both the CoT reasoning and sequence and the instruction sequence.

2. PM(xresp|xinstr): The joint conditional probability of the entire response given the

instruction.

3. PM(xans): The mean conditional probability computed over the answer tokens.

4. PM(xresp): The mean conditional probability computed over all tokens in the re-

sponse.

5. Predictive Entropy H [110]: A token-level uncertainty measure that aggregates

entropy over the response, where the value do not have a fixed range:

H ∈ [0, Lresp] = −
Linstr+Lresp∑
t=Linstr+1

∑
xt∼V

PM(xt|x<t) logPM(xt|x<t). (3.13)

6. Length-Normalized Predictive Entropy H [112]: It normalizes the predictive en-

tropy by the response length to account for variations in output size:

H ∈ [0, 1] =
H
Lresp

. (3.14)

7. Self-Consistency [132]: The probability averaged over 5 independently sampled an-

swers, thereby reflecting the consistency of the model’s outputs.

8. Verbalized Uncertainty [122]: A model-generated confidence score obtained via

additional prompting.
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The first six baselines derive their uncertainty estimates directly from token probabilities,

while the latter two rely on aggregating information from multiple or additional model out-

puts to capture uncertainty at a higher level. It is important to note that earlier approaches,

such as the semantic entropy methods proposed in [110, 116], provide only a weaker ap-

proximation of Self-Consistency. These methods focus on capturing lexical diversity but

do so at the expense of substantially higher computational overhead. In addition, the se-

mantic ambiguity are minimal in our reasoning tasks, making these methods less relevant.

Consequently, we neglect such methods.

3.4.3 Evaluation Metrics and Implementation Details

Prior works produce unbounded confidence scores [110, 118] and thus rely on AUROC

for its scale-invariance. While AUROC is effective in evaluating the discriminative ability

of a classifier, i.e. its capacity to separate correct from incorrect predictions, it does not

assess the calibration of the predicted confidence scores. Calibration refers to the degree of

agreement between the predicted probabilities and the actual likelihoods of the outcomes.

For instance, consider a scenario with three instances having predicted confidence scores

of 0.9, 0.5, and 0.1, where the first two predictions are correct and the third is incorrect.

In this case, AUROC would yield a score of 1, indicating perfect separation. However, the

same AUROC score of 1 would result even if the predictions were assigned extremely low

and uninformative confidence values (e.g., 9× 10−3, 8× 10−10, and 7.99× 10−10), despite

the fact that such scores lack meaningful interpretation. Consequently, a high AUROC does

not guarantee that the confidence estimates reflect the true probability of correctness. If a

model outputs a maximum estimated confidence of only 1× 10−3 across 10,000 instances,

users might be misled about the model’s overall certainty despite an ostensibly perfect

AUROC.

Consequently, when queries originate from distributions different from those seen dur-

ing training or from previously tested scenarios, relying solely on AUROC yields limited
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Table 3.1: Performance of different UQ methods. The scores (in %) are reported as µ± σ
over 5 runs, averaged across all LLMs. Higher AUROC is better; ECE the opposite.

GSM8k MATH BBH

AUROC↑ ECE↓ AUROC↑ ECE↓ AUROC↑ ECE↓

PM(xans) 60.9±0.6 49.4±0.0 74.2±1.2 48.1±0.2 65.0±0.9 44.6±0.3
PM(xresp) 61.1±0.8 41.9±0.0 69.0±1.5 41.5±0.1 59.3±1.3 42.6±0.2
PM(xans|xcot,xinstr) 60.7±0.6 48.4±0.1 73.9±1.2 43.7±0.3 66.1±0.8 38.1±0.5
PM(xresp|xinstr) 66.7±0.7 50.0±0.0 79.0±1.1 50.0±0.0 63.6±1.5 45.3±0.4
1−H(a) 61.8±0.8 33.2±0.1 69.3±1.5 35.3±0.2 59.4±1.3 33.5±0.4
1−H(a) 67.1±0.8 - 78.6±1.1 - 63.6±1.2 -

Self-Consistency 66.4±1.9 28.9±0.8 79.5±1.0 15.8±0.8 79.5±1.0 31.6±0.7
Verbalized 54.9±0.5 42.9±0.2 57.4±0.7 45.1±0.2 58.2±1.2 39.7±0.3

UQAC-P̃M,attn 58.4±0.8 37.4±0.6 68.6±1.2 42.8±0.5 64.6±1.3 23.4±1.0
UQAC-P̃M,sim 60.7±1.0 28.0±0.5 68.0±1.3 21.6±1.0 65.1±1.2 22.1±1.0
UQAC-P̃M 61.3±0.9 33.6±0.4 69.5±1.2 25.8±0.9 66.7±1.2 24.2±0.9

(a) We use 1−H and 1−H as higher entropy indicates higher uncertainty, different from probabilities. ECE
is not applicable to predictive entropyH as its value is unbounded.

insight into the true reliability of the model’s answers. Hence, we emphasize calibration

metrics, specifically ECE [90] and calibration plots with 20 bins. For completeness, we

also report AUROC in our results. Details regarding the calculation of AUROC and ECE

are introduced previously in subsection 2.3.4 and section 2.2.

We set C = 10 in Equation 3.3, K = 16 in Equation 3.4, Ltgt = 3 and θ = 0.5 in

Equation 3.6, and delay applying θ until Lattn ⩾ 5 to avoid premature backtracking. We

use L′
attn = 10 in Equation 3.10. For metrics, we balance correct and incorrect predictions

by subsampling. All experiments run on an NVIDIA A100-SXM4-80GB GPU with bf16

precision. Results, reported as mean (µ) ± standard deviation (σ) over five runs (seeds

0–4), are from our own implementations.
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3.5 Results

3.5.1 Main Results

Table 3.1 summarizes the average performance across all LLMs, showing superior calibra-

tion from UQAC. Notably, the unnormalized baselines, i.e., PM(xresp|xinstr) andH, achieve

higher AUROC on GSM8k and MATH by leveraging pronounced differences in response

lengths between correct and incorrect answers (shown in Figure 3.3a and discussed in sub-

section 3.5.7). Since longer sequences yield lower joint probabilities and higher cumulative

entropy, this effect benefits the AUROC calculation. However, when response lengths are

more balanced, as with DeepSeek-R1 on GSM8k (Figure 3.3c) or across most models on

the BBH dataset due to in-context regularization, the advantage diminishes. Furthermore,

H cannot be calibrated, and PM(xresp|xinstr) suffers from a 50.0% ECE, indicating that pre-

dicted probabilities are pushed toward extremes (1 as in Figure 3.2a or 0 as in Figure 3.2b).

This concentration harms the ability to distinguish correct from incorrect predictions based

solely on confidence, yielding poor calibration. While the length-normalized predictive

entropyH performs comparably to UQAC on GSM8k, it falters with longer inputs and ex-

tended reasoning chains, as evidenced by its inferior performance on the MATH and BBH

datasets and a more centralized entropy distribution (Figure 3.2c). In general, UQAC pro-

vides descent AUROC scores as well as delivers significantly lower ECE across datasets,

aligning more closely with true predictive performance and offering more reliable uncer-

tainty estimates (Figure 3.2).

3.5.2 External Baselines

Without additional fine-tuning, Verbalized Uncertainty exhibits significantly inferior per-

formance, consistently underperforming even the H baseline. This suggests that it is not

effectively integrated into prevalent LLMs and requires extensive training or careful prompt

engineering for practical utility. In contrast, Self-Consistency, a variant of Deep Ensem-
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Table 3.2: Performance differences when applying similarity-based filtering Equation 3.10
to all response tokens xresp instead of only the attention chain Lattn, i.e., xattn = xresp.

Llama-3.2-1B gemma2-2b Qwen2.5-1.5B Average

AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓

GSM8k
UQAC 64.75 19.54 68.10 35.45 57.97 34.76 63.61 29.92
w/o attns 61.56 22.06 66.17 32.22 60.09 35.22 62.61 29.83

MATH
UQAC 67.92 20.65 74.09 15.23 71.71 31.45 71.24 22.45
w/o attn 65.25 24.55 70.30 18.94 72.65 31.57 69.40 25.02

BBH
UQAC 61.91 21.05 60.78 26.01 65.90 21.35 62.86 22.80
w/o attn 62.17 22.52 60.06 25.60 62.25 22.82 61.49 23.65

bles [80], generally achieves superior performance, albeit with significant computational

overhead (shown in Figure 3.6 and discussed in subsection 3.5.8), aligning with theoretical

insights and prior empirical evidence [104, 132, 41]. When efficiency is not a primary con-

cern, it is possible to combine Self-Consistency with UQAC to further enhances calibration

performance.

3.5.3 UQAC Variants

Among the variants of UQAC, P̃M,attn yields lower AUROC and higher ECE. As reasoning

becomes more complex and the attention chain Lattn lengthens, the predicted probabilities

concentrate around zero, leading to increased ECE. This highlights the need to control to-

ken count via similarity filtering to preserve a balanced confidence distribution. Conversely,

P̃M, developed from P̃M,sim, consistently outperforms P̃M,sim in terms of AUROC, albeit

at the expense of higher ECE. Thus, the optimal variant depends on the specific application

requirements.

3.5.4 Ablation Study

Since similarity filtering Equation 3.10 effectively controls the size of the estimated atten-

tion space S, and given that Lattn inherently has higher similarity to xans compared to xresp

(Figure 3.5, subsection 3.5.7), we investigate whether using only similarity scores without
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Figure 3.2: Calibration plots and probability histogram for Llama-3.1-8B. The x-axis shows
the centers of 20 probability bins. The calibration curve (blue line with µ ± σ) displays
actual accuracy per bin, while the gray shadow represents the probability proportion.
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Figure 3.3: Histograms of response and attention chain lengths.
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Figure 3.4: Correlation analysis of ECE with accuracy and AUROC for UQAC-P̃M. In
Figure 3.4a and Figure 3.4b, different point types differentiate dataset; in Figure 3.4c they
distinguish models.

the attention backtracking described in subsection 3.3.1 is sufficient. Specifically, we set

xattn = xresp in subsection 3.3.2, ignoring subsection 3.3.1. Table 3.2 compares the gener-

alizable results of this similarity-only variant against UQAC on smaller-scale models. The

similarity-only variant performs notably worse than UQAC, exhibiting higher ECE and

lower AUROC scores. This indicates that attention backtracking is crucial for effectively

identifying semantically important tokens and enhancing calibration performance.

3.5.5 Correlation Analysis

Previous studies such as [41] report a negative correlation between a model’s prediction

accuracy and its UQ performance, suggesting that higher accuracy often coincides with

poorer calibration. To verify whether this holds for autoregressive LLMs, Figure 3.4a plots

each model’s ECE against its accuracy across all datasets. The strong correlation shown
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in the figure, evidenced by an average Pearson’s coefficient of 0.760, confirms that the

conclusion still holds for LLMs. This is further discussed in subsection 3.5.6 from the

dataset perspective.

We further analyze the relationship between ECE and AUROC under two conditions.

Across different models (presented by the same type of points), Figure 3.4b reveals a neg-

ligible correlation (average coefficient of −0.147), indicating that calibration and AUROC

capture distinct performance aspects and should be evaluated jointly, echoing section 3.4.

However, when examining P̃M with hyper-parameters, specifically, varying L′
attn from 8 to

12 and the similarity threshold in Equation 3.10 between 0 and 0.2, a more pronounced pos-

itive correlation (coefficient of 0.489) emerges. These findings suggest a trade-off between

calibration and AUROC, warranting further exploration in future work.

3.5.6 Potential Overfitting

On GSM8k, nearly all uncertainty quantification methods show a significant performance

gap compared to those on more challenging datasets. As illustrated in Figure 3.2f versus

Figure 3.2d and Figure 3.2e, GSM8k exhibits a marked overconfidence: the probability

distribution is highly centralized around 1 and the calibration curve deviates substantially

from the ideal diagonal. This behavior suggests that SOTA LLMs may be overfitting on

GSM8k, thereby questioning its reliability as a benchmark for evaluating LLM capabilities.

3.5.7 Response Lengths

Figure 3.3 illustrates the lengths of the entire response sequences Lresp and the attention

chain Lattn, categorized by answer correctness. The lengths of the similarity-filtered chain

(L′
attn) are omitted as they are controlled. Across all models, Lattn is less than 10% of Lresp,

demonstrating that the attention backtracking function f effectively reduces computational

overhead. Additionally, while Lresp is noticeably longer for incorrect predictions, this dif-

ference is less pronounced for Lattn. Given that tokens in the attention chain have a higher
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Figure 3.5: UQ method efficiency and average token similarity between the answer tokens
xans and 1) the attention chain tokens xattn (blue bars) and 2) the response tokens xresp

(gray bars). The similarity scores are computed by averaging the cosine similarities of
token embeddings over all examples. It shows that xattn tokens are inherently more similar
to xans tokens than average xresp tokens, indicating that the attention chain is more likely to
capture the answer-relevant context.
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Figure 3.6: Average computational overhead (running time, excluding I/O) measured on the
Llama-3.1-8B model when generating outputs of approximately 500 tokens. “Infer” refers
to the baseline inference time needed to generate responses; “VU” denotes the Verbalized
Uncertainty approach; and “SC” indicates Self-Consistency with 5 sampled responses.

average similarity to the answer tokens (shown in Figure 3.5 with sim(xans,xattn) = 0.257

versus sim(xans,xresp) = 0.206), these results confirm that f successfully captures the rea-

soning process and identifies critical tokens.

3.5.8 Computational Overhead

Compared to standard inference in Figure 3.6, UQAC introduces only a slight computa-

tional overhead, demonstrating higher efficiency compared to the Verbalized Uncertainty

method. In contrast, although Self-Consistency achieves superior calibration performance,

it substantially increases computational requirements. This overhead makes Self-Consistency

less feasible for real-time applications, particularly in scenarios demanding extensive out-
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put generation or strict latency constraints.

3.6 Conclusion

This work addresses UQ for LLMs, particularly in tasks where final answers are derived

from the intermediate reasoning steps. We propose UQAC, a method that leverages at-

tention chains constructed according to the autoregressive attention weights to efficiently

identify and track semantically critical tokens within the reasoning sequence, significantly

reducing the space for uncertainty estimation. UQAC provides reliable uncertainty esti-

mates with minimal computational overhead, requiring only a few parallel forward infer-

ences without additional fine-tuning, multiple recurrent response sampling, or depending

on external models. Empirical evaluations across diverse benchmarks and model archi-

tectures confirm that UQAC achieves superior calibration, especially when intermediate

reasoning steps substantially influence final outcomes. Moreover, UQAC is applicable to

any white-box autoregressive LLMs, preserves reasoning interpretability, and scales effi-

ciently with increasing model size and complexity.
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CHAPTER 4

DATA-EFFICIENT INFORMATION EXTRACTION SYSTEMS

4.1 Introduction

In the previous chapters, we have studied and developed various UQ methods for both

autoencoding and autoregressive PLMs, spanning tasks in general as well as scientific do-

mains. Such UQ methods are central for ensuring the safety and reliability of PLMs when

deployed in real-world applications. Building upon these uncertainty quantification tech-

niques, the subsequent chapters illustrate how to utilize model/function reliability estimates

to enhance performance across diverse settings. They also discuss how to design prompting

strategies or fine-tuning procedures to maximize performance gains from limited datasets.

4.1.1 Information Extraction and Named Entity Recognition

IE is a fundamental NLP task aimed at extracting structured information from unstructured

text. It finds application in domains such as biomedical research [133], clinical data anal-

ysis [134], materials property extraction [52], social media analysis [135], and customer

feedback processing [136], etc. A pivotal sub-task is NER, wherein pre-defined named en-

tities are identified in text. NER has wide-reaching implications, underpinning tasks such

as knowledge graph construction, question answering, and material synthesis [137]. While

fully supervised NER has historically delivered strong performance, it relies extensively

on large, high-quality labeled datasets [49]. This dependency makes it expensive and time-

consuming to create new corpora or update existing ones with additional entity types or

expanded document collections [57, 59, 48].
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(a) An example of weakly supervised NER with two LFs.

(b) Illustration of the disadvantage of HMMs.

Figure 4.1: An example of weakly supervised NER with two LFs, along with the issue of
appling HMMs to weakly supervised NER.

4.1.2 Weak Supervision

To mitigate the high cost of manual annotations, weak supervision has gained attention as

a promising alternative [47, 56]. Instead of meticulously labeling each token, multiple,

easier-to-obtain LFs generate weak, often noisy labels [55, 56]. These LFs may utilize

domain-specific dictionaries, pattern-matching rules, or knowledge bases [57], automati-

cally labeling large volumes of data. Since they do not depend on manually annotated gold

data, LFs can facilitate zero-shot NER when properly designed.

However, deploying LFs introduces new complexities. Different LFs often exhibit vary-

ing levels of coverage and precision. They can also conflict with each other, occasionally

providing contradictory labels for the same token (see Figure 4.1a). Approaches like Ma-

jority Voting (MV) and Snorkel [56] simply assign labels token by token, overlooking

global context. To address this, more advanced frameworks [138, 139, 57, 140] represent

true labels as latent variables in a graphical model and perform unsupervised learning to

reconcile inconsistent LF outputs. In particular, HMMs have been explored to capture se-

quential dependencies among tokens [138, 139, 57], though the Markov property constrains

them to adjacent dependencies and tends to overlook broader sentence semantics. Subse-

quent endeavors often train a deep neural network on the aggregated weak labels [141, 49],
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Figure 4.2: An illustration of weak annotations for weakly supervised NER and the corre-
sponding true emission pattern in an HMM.

hoping to refine these noisy labels with powerful end models. Nevertheless, [49] reveals

that the end model does not always outperform the label aggregator, indicating that label

aggregation quality remains a central challenge.

4.1.3 Conditional Hidden Markov Model

In [59], we propose CHMM to overcome the limited expressiveness of classical HMMs

in the weakly supervised NER setting. Unlike conventional HMMs with fixed transition

and emission matrices, CHMM predicts token-wise transition and emission probabilities

by conditioning the observation marginals on domain-specific autoencoding PLM embed-

dings. The token-wise probabilities allows CHMM to adjust the transitions and emissions

according to the input tokens, which is more flexible than HMM’s constant counterpart

(see Figure 4.1b for an illustration). This design introduces greater flexibility for modeling

how true labels evolve with diverse token contexts, thereby alleviating the strict Markov

constraint.

Yet, CHMM faces several obstacles when scaling up: 1) it allocates a full emission

matrix for each LF and label combination, leading to a huge parameter space and a non-

convex optimization landscape; 2) it lacks a clear mechanism to disentangle LF reliability

from off-diagonal errors, which complicates interpreting and managing LF mistakes.
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4.1.4 Sparse Conditional Hidden Markov Model

To address these scalability and interpretability concerns, [60] introduces Sparse-CHMM.

It retains CHMM’s conditioning on BERT for transition probabilities but adopts a more

compact parameterization for emission probabilities (see Figure 4.2). The core insight is

that the diagonal each element of an emission matrix reflect LF reliability in its predic-

tion, while off-diagonal elements capture the likelihood of incorrect labels. The diagonal

emission elements bear the most significance as they directly parameterize the LF perfor-

mance. Hence, Sparse-CHMM focuses first on learning each LF’s reliability score before

expanding that score into a complete emission matrix through carefully designed expan-

sion functions. Compared to CHMM, the fewer parameters in Sparse-CHMM lead to more

stable training and better scalability.

Nonetheless, certain LFs may systematically produce errors or label tokens in conflict-

ing ways. To handle such cases, Sparse-CHMM incorporates the Weighted XOR (WXOR)

scores, which capture mutual disagreement frequencies among LFs and refine the off-

diagonal emission probabilities when needed. Additionally, Sparse-CHMM leverages a

Dirichlet-based sampling scheme to balance deterministic reliability priors with stochastic

noise, mitigating local optima. Extensive experiments confirm that Sparse-CHMM ad-

vances SOTA performance in weakly supervised NER while maintaining interpretability

and efficiency.

4.1.5 Autoregressive Information Extraction

Although weak supervision considerably reduces labeling overhead, its effectiveness de-

pends on the domain relevance of heuristics and LFs, as well as tuning hyperparameters

for different tasks. Moreover, both fully and weakly supervised methods often assume a

fixed set of entity types and relations, limiting their applicability in scenarios where new or

diverse information categories may emerge.

With the rise of LLMs, attention has shifted toward IE methods that require minimal
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Generate and OrganizeTraditional One-Step Prompting

Please identify the 
“Person” entities, and 
organize the results 
as a table with 
column “Person”… 

IE Instruction

Structure 

Regularization

Of course! Here is the table:
| Person        |
|---------------|
| Donald Trump  |
| ...           |

Please remove 
entities that do not 
refer to “Person”… 

Clean-Up

Here is the updated table: … 

Please identify the 
“Person” entities …

IE Instruction

| Person        |
|---------------|
| Donald Trump  |

Please remove 
entities that do not 
refer to “Person”… 

Clean-Up

Please organize the 
results as a table …

Of course! The entities include:
1. Donald Trump, who was …
2. White House is the location where…

According to the context, “White 
House” is not a person …

Structure 

Regularization

Figure 4.3: The pipeline of G&O-NER, compared with One-Step prompting methods.

task-specific labels or domain knowledge. Promising strategies include prompting LLMs

directly [142, 143, 144, 145] or fine-tuning them using either gold labels or pseudo labels

generated by GPTs [146, 147, 148, 149, 150]. However, a key challenge is guiding the

model to produce well-structured outputs from unstructured, natural language prompts.

Dedicated prompting strategies and output templates [147, 150] can help, though they

risk format inconsistencies or performance degradation when multiple instructions must

be combined.

In this thesis, we propose a straightforward yet effective approach, G&O, for enabling

LLMs to perform structured zero-shot IE tasks, focusing on both NER and Relation Ex-

traction (RE). Our method splits the output generation process into two primary steps: 1)

a free-form generation stage where the model naturally explains and extracts relevant in-

formation; and 2) a structuring stage that subsequently converts this free-form text into a

standardized output format. We further introduce a clean-up module to remove extraneous

noise in the free-form responses prior to the structuring step, mitigating potential misalign-
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Sparse-CHMM

HMM

CHMM

Figure 4.4: Architectures of HMM variants. w(t) is the input token; e(t) is the correspond-
ing embedding; x(t)

k is the observation from LF k; z(t) is the hidden state; Λ and ∆ are
base and addon prior matrices; and Φ is the sampled emission matrix.

ment between instructions and the desired structured output. Empirical results demonstrate

that G&O consistently improves zero-shot IE performance across different LLMs. Each

component—free-form generation, clean-up, and structuring—contributes to these gains.

Additionally, G&O can be easily combined with self-consistency techniques [132] or other

post-processing approaches to meet more complex formatting requirements.

To foster research on both weak supervision and generative IE, we provide code for

CHMM at https://github.com/Yinghao-Li/CHMM-ALT, Sparse-CHMM at https://github.

com/Yinghao-Li/Sparse-CHMM, and G&O at https://github.com/Yinghao-Li/GnO-IE. We

hope these resources prove valuable for researchers and practitioners, enabling further in-

novations in efficient and flexible IE methods.

4.2 Problem Setup

4.2.1 Weakly Supervised Named Entity Recognition

Suppose we have T categorical tokens w(1:T ) in the input sentence and a set of candidate

entities E with size E, discriminative NER taggers assign one entity label to each token
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w(t), t ∈ N[1,T ]. Using the BIO tagging scheme, the label set is L = {O}∪{B-ent,I-ent}ent∈E

with the size of L = 2E + 1, where “O” (out-of-definition) indicates unrelated entities.

For weakly supervised NER, we have K independent LFs, each providing a sequence

of weak annotations x
(1:T )
k . x

(t)
k ∈ {0, 1}L is one-hot over the label set L. Label models

aim to approximate the ground-truth labels y(1:T ) ∈ LT with latent states z(1:T ) ∈ LT

given the input tokens and weak annotations {w(1:T ),x
(1:T )
1:K }. We do not distinguish the

label string and label index, and uniformly represent them by integers l, i, or j ∈ N[1,L].

In addition, we focus on one sentence and omit the sentence index m ∈ N[1,M ] unless

specified otherwise.

4.2.2 Autoregressive Information Extraction

In autoregressive IE, we adopt a flexible approach that does not rely on a predefined set

of tokens and labels. Rather, we encapsulate the context, represented as winstr, within a

prompt that articulates the task using natural language, as illustrated in Figure 4.3. The

ultimate output of the LLM is a response sequence wresp, typically adhering to a prede-

termined format like a Markdown table, JSON, or a list, which is dictated by the initial

prompt. To achieve this objective, we may require one or more round of LLM interac-

tions. This response structure is intentionally chosen to facilitate post-processing, enabling

the efficient extraction of targeted information such as entities and relationships from the

model’s output.

4.3 Hidden Markov Models

CHMM and Sparse-CHMM model true entity labels as hidden variables, inferring them

from observed noisy labels. As depicted in Figure 4.4 and Figure 4.5, traditional discrete

HMMs rely on a single transition and emission matrix to model the probabilities of all la-

bel transitions and hidden state-observation emissions. These matrices remain static once

trained. Contrastingly, CHMM conditions both its transition and emission matrices on the
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Figure 4.5: Model details of HMM and CHMM. CHMM predicts the token-wise transition
and emission probabilities while HMM uses fixed semantics-independent probabilities.
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PLM embeddings e(1:T ) for the input tokens w(1:T ). This approach leverages the rich con-

textual information from PLM embeddings and overcomes the limitation of static matrices.

4.3.1 Overall Model Architecture

In CHMM, Ψ(t) ∈ [0, 1]L×L represents the transition matrix at time step t, which is the

probability of transitioning from true label i to j: Ψ(t)
i,j ≜ p(z(t) = j|z(t−1) = i, e(t)), i, j ∈

N[1,L]. The emission matrix for LF k, Φ(t)
k ∈ [0, 1]L×L, has elements representing the likeli-

hood of LF k observing label j given the true hidden label i at time step t: Φ(t)
k,i,j ≜ p(x

(t)
k,j =

1|z(t) = i, e(t)). Ψ(t) and Φ
(t)
1:K are predicted from e(t) through Fully Connected (FC) layers

and reshaped to meet the expected matrix dimensionality. To ensure these matrices repre-

sent proper probability distributions, the SoftMax function is applied along the last axis,

affecting the output labels for Ψ(t) and observations for Φ(t).

Examining the emission matrix Φ(t) ∈ [0, 1]K×L×L, we notice that the scalability issues

of CHMM arise as K and L increase. To predict Φ(t) from e(t), the FC dimensionality

could reach 768KL2. For instance, CoNLL 2003 dataset features approximately 20 LFs

and 4 entity types, resulting in∼ 1.24×106 FC parameters. The subsequent SoftMax layer,

further adds to the computational burden, making model training both costly and complex

due to the non-convex nature of the optimization problem.

Therefore, rather than directly estimating all elements, Sparse-CHMM computes LF

reliabilities Ã ∈ [0, 1]K×L using an NN, and then extends these into the base prior Λ ∈

[0, 1]K×L×L via pre-defined heuristic functions. Utilizing Ã and LF observations x, the

WXOR scores W̃ ∈ [0, 1]K×L×L are derived, indicating the likelihood of LFs provid-

ing incorrect labels. These scores are adjusted by a NN-predicted matrix C ∈ [0, 1]K×L,

creating the add-on prior ∆. The emission matrix Φ is then generated from a Dirichlet dis-

tribution, informed by Λ and ∆, to aid in model training (subsection 4.3.4). This process

is depicted in Figure 4.6.

In contrast to transitions, emissions exhibit significantly less variability relative to input
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tokens. Therefore, we use sentence-level emissions from the sentence embedding e(0).

4.3.2 Labeling Function Reliability and Emission Base Prior

For LF k, the emission diagonal elements Φk,l,l ≜ p(x
(t)
k,l = 1|z(t) = l, e(0)), l ∈ N[1,L], as

depicted in Figure 4.2, have a unique physical significance: they represent the probabilities

of LF k correctly identifying the labels, which can be regarded as LF reliability. Conversely,

a plausible emission matrix can be formulated based on the known performance of an LF.

Upon establishing this framework, we proceed to forecast the reliability logits utilizing

the sentence embedding

A ∈ RK×L = reshape(FC(e(0))), (4.1)

which, after being normalized along the label dimension, is integrated into the diagonal

of Φ. Nonetheless, given that LFs more frequently encounter the label O (indexed as 1)

than other labels, the model inclines to accentuate the corresponding weight Φk,l,1 within

the emission. Due to the constraint that Φk,l sums to 1, an inflated Φk,l,1 diminishes the

diagonal values Φk,l,l excessively. This imbalance is rectifiable by employing SoftMax

across the LFs:

Â:,l = softmax(A:,l), l ≥ 2; Â:,1 = σ(A:,1). (4.2)

This ensures a high score for at least one LF, preventing the model from overlooking all

weak annotations. Given that Ak,1 signifies the emission confidence for O, it suffices to

bound its value within (0, 1) using the element-wise sigmoid function σ:

However, the SoftMax enforces
∑

k Âk,l = 1. This condition creates a fixed-size pool

for allocating reliability scores, limiting model flexibility by not accommodating scenarios

where either multiple LFs are confident or none are. As a compensation, we introduce a
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Figure 4.6: Pipeline for constructing emissions for LF k = 1 across 5 labels. Darker shades
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piecewise scaling function hn,s,r(·), defined as

Ãk,l = hn,s,r(Âk,l);

hn,s,r(a) =


1

rn−1a a
1
s < r;

− 1
(1−r)(n−1) (1− a

1
s )n + 1 a

1
s ≥ r.

(4.3)

It calibrates the SoftMax output with scales defined by exponents n and s. To enable more

subtle control of the scores, we utilize the split point r ∈ [0, 1] to segment the input domain

into upper and lower halves, each scaled differently.

Subsequently, we extend Ã into the emission base prior matrix Λ ∈ [0, 1]K×L×L, em-

ploying expansion functions based on latent state z(t) = i and the observation x
(t)
k,j = 1:

Λk,i,j = fi,j(Ãk,i); ∀i, j ∈ 1 : L,

fi,j(a) =



a i = j;

1
L−1

(1− a) i = 1, j ≥ 2;

gn,r(a) i ≥ 2, j = 1;

1
L−2

(1− a− gn,r(a)) i ≥ 2, j ≥ 2, i ̸= j,

(4.4)

gn,r(a) =


2−L

(n−1)rn−nrn−1a
n + (1− L)x+ 1 a ≤ r;

gn,r(r)

r−1
a− gn,r(r)

r−1
a > r,

(4.5)
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where n is the exponential term and r is the split point.

LF k’s reliability scores Ãk populate the diagonal of Λk (i.e., Λk,l,l = Ãk,l). For latent

state O (z(t) = i = 1), emissions to non-O labels, p(x(t)
k,j = 1|z(t) = 1, e(0)), ∀j ≥ 2,

are uniformly distributed, summing to 1 − Ãk,1. For latent states other than O (z(t) =

i ≥ 2), the likelihood of observing O surpasses that of other entities, resulting in higher

and more pivotal emit-to-O probabilities p(x(t)
k,1 = 1|z(t) = i, e(0)), ∀i ≥ 2, as illustrated

in Figure 4.2. Low reliability scores indicate an LF’s indecisiveness, leading to uniformly

distributed off-diagonal non-O values near the diagonal values. Above some threshold r, an

LF is deemed sufficiently confident, reducing the emission probabilities to other entities.

The exponent n determines the rate at which emit-to-O probabilities decline, influencing

how closely off-diagonal values approach the diagonal before reaching the threshold r.

Please refer to [60] for further details.

4.3.3 WXOR and Emission Add-on Prior

The off-diagonal values Φk,i,j; i, j ≥ 2; i ̸= j signify the likelihood of LF k erroneously

classifying label i as j. These probabilities are typically low, yet they can be significant

in certain instances, as demonstrated in Figure 4.2, which cannot be addressed by the base

prior Λ.

To better represent misclassification probabilities, we introduce WXOR scores W̃ ∈

[0, 1]K×L×L. For LF k relative to other LFs k′ ∈ N[1,K]\k, we define a WXOR logit between

a query label lquery ∈ N[2,L] and a target label ltgt ∈ N[2,L]:

W
(t)
k,lquery,ltgt = (1− Ãk,lquery)x

(t)
k,lquery

K∑
k′=1

Ãk′,ltgtx
(t)
k′,ltgt ;

W
(t)
k,1,: = W

(t)
k,:,1 = 0; W

(t)
k,l,l = 0, l ∈ N[1,L].

(4.6)

WXOR quantifies the error probability of LF k for label lquery against other LFs’ confidence

in ltgt. A high W
(t)
k,lquery,ltgt indicates LF k’s uncertainty in observing lquery juxtaposed with
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other LFs’ confidence in ltgt. W (t)
k,lquery,ltgt is nonzero only if LF k uniquely observes lquery,

analogizing an XOR gate. Labels O and diagonal entries do not require WXOR. With

Equation 4.6, we aggregate W (t) tensors across M sentences, each with length Tm, to

compile the aggregate WXOR:

Ŵk,lquery,ltgt =

∑M
m=1

∑Tm

t=1W
(t)
m,k,lquery,ltgt∑M

m=1

∑Tm

t=1 x
(t)
m,k,lquery

. (4.7)

Directly adding Ŵ into Λ is impractical due to unknown scale ratios. As a solution,

we employ a scaling factor

C ∈ (0, 1)K×L = reshape(σ(FC(e(0)))). (4.8)

Since C can only downscale values, we adjust Ŵ elements to ensure sufficiently large

pre-scaling values W̃k,:,ltgt = softmax(Ŵk,:,ltgt). Subsequently, the emission addon prior

∆ ∈ [0, 1]K×L×L is constructed by rescaling W̃k rows:

∆k,:,l = Ck,l × W̃k,l,:. (4.9)

Notice that in ∆k, the target labels are at the first axis and the query labels second, different

from W̃k. As the target labels are essentially the latent states we want to predict, this unifies

the physical meaning of W̃ and the emission matrix Φ.

4.3.4 Emission Matrix Sampling

We opt to sample the latent emission variables from the Dirichlet distribution parameterized

by the base and addon priors Λ and ∆, which is more robust and avoids the saddle points.

Moreover, Dirichlet distribution does not post sum-up-to-one constraints to its parameters,

granting greater flexibility in parameter selection. We formulate the concentration parame-
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ters Ω by summing the base and addon priors and then applying a scale

Ω ∈ RK×L×L
+ = νexpan × (Λ+∆) + νbase, (4.10)

where νbase ∈ R+ and νexpan ∈ R+ are designed to regulate the baseline concentration and

the span of concentration, respectively. The emission matrix Φk for LF k is then sampled

row-wise from this distribution:

Φk,l ∼ Dir(Ωk,l). (4.11)

We employ pathwise derivative estimators [151] to propagate the gradient through the

Dirichlet sampling.

Dirichlet sampling is only applied when network layers requires backpropagation. On

other occasions, such as validation and test, the samples are substituted by the mean of the

Dirichlet distribution.

4.3.5 Model Initialization

HMM typically initializes transition and emission probabilities with statistical estimates

Ψ∗ and Φ∗ derived from observations. However, there is no direct correspondence between

the estimated matrix initials and NN parameters. To circumvent this, we pre-train CHMM

and Sparse-CHMM by minimizing the Mean Squared Error (MSE) loss ℓMSE between their

outputs and the target statistics: ℓMSE = 1
T

∑
t ∥Ψ∗−S(t)∥2F +∥Φ∗−H(t)∥2F . ∥·∥F denotes

the Frobenius norm, and S(t) and H(t) are the predicted transition and emission matrices

at time step t, respectively. The model is trained on the training set, and the statistics are

computed from the training set as well.
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4.3.6 Inference

Upon completion of training, CHMM and Sparse-CHMM are capable of determining the

most likely sequence of hidden labels ẑ(1:T ):

ẑ(1:T ) = argmax
z(1:T )

pθ̂(z
(1:T )|x(1:T )

1:K , e(0:T )), (4.12)

with θ̂ denoting the model’s trained parameters. These outcomes are obtainable through

the Viterbi decoding algorithm or by maximizing the smoothed marginal γ(1:T ).

4.3.7 Training Objective

According to the generative process of CHMM, the joint distribution of hidden states and

observed weak labels for a sequence, p(z(0:T ),x(1:T )|θ), is decomposable as follows:

p(z(0:T ),x(1:T )|θ) = p(z(0))p(x(1:T )|z(1:T )) = p(z(0))
T∏
t=1

p(z(t)|z(t−1))
T∏
t=1

p(x(t)|z(t)),

(4.13)

where θ symbolizes all trainable parameters. HMMs are typically trained using an Expectation-

Maximization (EM) algorithm. During the E-step, we calculate the expected complete data

log likelihood:

Q(θ,θold) =
L∑
i=1

γ
(0)
i log πi +

T∑
t=1

L∑
i=1

L∑
j=1

ξ
(t)
i,j log Ψ

(t)
i,j +

T∑
t=1

L∑
i=1

γ
(t)
i logφ

(t)
i , (4.14)

where φ
(t)
i ≜ p(x(t)|z(t) = i) =

∏K
k=1

∑L
j=1Φ

(t)
k,i,jx

(t)
k,j is the observation likelihood; π1 =

1,π2:L = 0 represents the initial hidden status; γ(t)
i ≜ p(z(t) = i|x(1:T )) is the smoothed

marginal; ξ(t)i,j ≜ p(z(t−1) = i, z(t) = j|x(1:T )) signifies the expected number of transitions.

These variables are derived using the forward-backward algorithm, which is detailed in

section C.1.

In the M-step, we update the model parameters by maximizing Equation 4.14 through
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Figure 4.7: Sparse-CHMM training procedure. The model parameters of the dotted squares
are frozen. MSE and EM are optimization approaches associated with the model pre-
training and training steps.

gradient ascent ∇θ = ∂Q(θ,θold)
∂θ

. This is implemented through backpropagation, and the

details are provided in the original paper [59].

4.3.8 Training Stages

As the computation of the emission is complicated and inter-dependent, we adopt a three-

stage training strategy to allow sufficient training of each model component, as shown

in Figure 4.7. It decouples the optimization of the model components while keeping the

training efficient.

Stage 1 is focused on optimizing the transition matrix Ψ and the emission base prior

Λ, excluding the addon prior by setting ∆ = 0. The reason is straightforward: calculating

the WXOR scores W̃ requires high-quality reliability scores Ã, which are obtained by

optimizing Λ. Stage 2 trains the addon prior ∆, leaving Ψ and Λ frozen. This stage

aims to search for the best scaling factors C for W̃ , and freezing the irrelevant parameters

relieves the training pressure. W̃ is calculated right after stage 1 with all training and

validation instances and remains constant for stages 2 and 3.

Stage 3 is inspired by our empirical discovery about HMMs. We find that if we only

optimize the transition matrix Ψ with the emission fixed, generally to the true values, the

model performance can be improved. The true emission is the statistics of the annotations
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xk of LF k given ground-truth labels y:

Φtrue
k,i,j = p(xk|y) ≜

∑M
m=1

∑Tm

t=1 I(x
(t)
m,k,j = 1, y

(t)
m = i)∑M

m=1

∑Tm

t=1 I(y
(t)
m = i)

,

where I(·) is the indicator function. Consequently, we believe that continuing training the

transition of Sparse-CHMM for several more epochs with the emission frozen would lead

to a similar performance improvement.

In addition, stages 1, 2, and 3 use different pre-training strategies. The pre-training

of stage 1 is the same as subsection 4.3.5. Stage 2’s pre-training is to initialize the NN

parameters associated with the addon prior ∆ only, so we drop the transition part of the

MSE loss and substitute the target emission by Φ′ = λΦ∗ + (1−λ)
M

∑M
m=1 Φ

(I)
m to take

advantage of stage 1’s results. Here λ ∈ [0, 1] is the weight of observation statistics, which

is fixed to 0.2 in our experiments. Φ
(I)
m is the optimized emission from stage 1. Stage 3

successes all model parameters from the previous stage and thus has no pre-training.

Another issue with the training is the LF competition. When several LFs classify dif-

ferent tokens as the same entity, they have to compete for the reliability score due to the

normalization brought by the SoftMax function . In this case, the LF with the highest ob-

servation frequency tends to dominate the score, making other LFs neglected. To deal with

this issue, we append a simple MV to the LF set during the training of the reliability scores.

MV aggregates the token-entity mappings from all LFs into a single annotation sequence,

which forces the model to pay equal attention to the patterns and resolves the competition.

4.3.9 Complexity Analysis

Compared with CHMM, Sparse-CHMM significantly reduces the training resource con-

sumption by predicting sparse emission elements. The emission NN parameter number and

computation complexity are shown in Table 4.1, where the transition attributes are not pre-

sented because they are the same for both models. The factor 2 for Sparse-CHMM comes
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Table 4.1: Emission complexity of each epoch. M is the number of training sentences, T
is the average of sentence lengths, and demb is the dimension of the PLM embeddings.

CHMM Sparse-CHMM

# Emission Parameters demb ×K × L2 2× demb ×K × L
Emission Complexity O(M × T × demb ×K × L2) O(M × demb ×K × L)

from matrices Ã and C. We can see that Sparse-CHMM reduces the emission NN parame-

ter number to 2/L of CHMM and the complexity to 1/(T ×L), which are substantial when

the number of entity labels L is large. The complexity of other emission elements is neg-

ligible because they do not contain the embedding dimension demb, which is much larger

than other terms. Calculating the WXOR scores can be as complex asO(M×T×K2×L2),

but they are calculated only once at stage 2 and stay fixed henceforth.

4.4 Autoregressive Information Extraction

Along the other line of research, to improve the zero-shot IE capabilities of LLMs when

structured outputs are required, our prompting pipeline, G&O, introduces three main com-

ponents, depicted in Figure 4.3:

• Free-form response generation, in which the LLMs are prompted to identify rele-

vant information from the input context without imposing any structural or syntactic

constraints;

• Answer clean-up, a task-dependent filtering step that removes superfluous or unre-

lated information to preserve the integrity of the final structured output; and

• Structure organization, which transforms the refined content into a well-defined

format, such as a Markdown table or list, based on the LLMs’ response history.

Additionally, we incorporate zero-shot CoT [152] to further enhance IE performance.

Although this design may seem like a minor adjustment compared to conventional IE

prompts, which typically merge steps 1) free-form generation and 3) structure organization

into a single prompt (Figure 4.3), it more closely aligns with the inherent flow of natural
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>> User: 
Please identify the "Disease" entities mentioned in the following paragraph.

Paragraph: Risk of transient hyperammonemic encephalopathy in cancer patients who received 

continuous infusion of 5 - fluorouracil with the complication of dehydration and infection .

Let's think step by step.

>> Assistant: 
Sure! Let's identify the "Disease" entities mentioned in the paragraph:

1. Transient hyperammonemic encephalopathy: This is a disease entity mentioned in the paragraph.

2. Dehydration: Although dehydration is not a specific disease, it is mentioned as a complication in 

the paragraph.

3. Infection: Similar to dehydration, infection is not a specific disease, but it is mentioned as a 

complication in the paragraph.

So, the disease entities mentioned in the paragraph are "transient hyperammonemic 

encephalopathy."

Figure 4.8: GPT-3.5’s natural language responses tend to include irrelevant entities (marked
by red). Although clearly explained, irrelevant terms still pose a difficulty for GPT-3.5
during format organization.

language and often yields more coherent, informative responses [153].

Moreover, the clean-up stage is indispensable for ensuring the clarity of the final results.

Figure 4.8 shows that while LLMs generally identify relevant entities or relationships, they

also tend to include extraneous details unrelated to the requested types. This tendency

likely stems from the models’ training to be “helpful” through RLHF [22]. Despite having

identified the correct entities, these additional details can complicate the subsequent orga-

nization of useful information into the desired format. Hence, an explicit clean-up phase

is crucial for delivering concise, task-focused outputs. Finally, we adopt Markdown ta-

bles for the structured output due to their broad occurrence in LLM training data and for

consistency with the RE pipeline.
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Table 4.2: NER dataset statistics.

CoNLL03 NCBI BC5CDR Laptop OntoNotes PolyIE
[154] [155] [133] [136] [135] [52]

# Instance 22,137 793 1,500 3,845 143,709 1,170
# Training 14,041 593 500 2,436 115,812 -
# Validation 3,250 100 500 609 5,000 -
# Test 3,453 100 500 800 22,897 1,170

# Entities 4 1 2 1 18 3
# LFs 16 5 9 3 17 -

4.5 Experiment Setup

4.5.1 Weakly Supervised Named Entity Recognition

Datasets We consider 5 NER datasets that span generic to highly specialized domains,

thus providing a broad basis for evaluating weakly supervised NER methods. Specifically:

• CoNLL 2003 (English subset) [154] consists of 22,137 sentences from Reuters news

stories, annotated with 4 entity types: PER, LOC, ORG, and MISC.

• LaptopReview [136] comprises 3,845 sentences of laptop reviews. All laptop-related

Terms are treated as named entities.

• NCBI-Disease [155] contains 793 PubMed abstracts, each annotated with Disease

mentions.

• BC5CDR [133] consists of 1,500 PubMed articles annotated with Chemical and

Disease entities.

• OntoNotes 5.0 [135] is a large-scale dataset of 143,709 sentences labeled with 18

fine-grained entity types.

For all datasets, we use the LFs provided by the Wrench benchmark platform [49],

which are curated for weakly supervised NER. Table 4.2 reports the number of entities and

labeling functions for each dataset.
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Baselines We compare our proposed model with representative weakly supervised NER

baselines from the Wrench benchmark:

• MV simply selects the majority vote among all LFs, resolving ties randomly.

• Snorkel [56] is a context-free, token-based graphical model that treats tokens inde-

pendently.

• HMM [138, 57, 139] is a popular sequence model for weakly supervised NER, of-

fering limited context modeling via Markov assumptions.

• CHMM [59] extends HMM by predicting token-wise transition and emission proba-

bilities from BERT embeddings through NNs.

• ConNet [141] exploits a context-aware attention mechanism over Conditional Ran-

dom Field (CRF) representations produced by different LFs.

Additionally, we include 3 supervised reference methods:

• A fully supervised BERT-NER model, trained directly on human annotations.

• The best consensus of LFs, serving as an oracle that always selects the correct token

labels whenever any LF provides them.

• CHMM-FE, which is the CHMM model augmented with fixed ground-truth emission

probabilities (see section 4.3.8).

Note that each supervised reference has direct or partial access to the true labels during

training, differentiating them from the purely weakly supervised baselines.

Evaluation Metrics We evaluate all NER label models using micro-averaged, entity-

level precision, recall, and F1 scores. Specifically, let TP, FP, and FN denote the total

counts of true positives, false positives, and false negatives, respectively, aggregated over

all entities and classes. Then, we compute the micro-averaged precision, recall, and F1 as

follows:
Precision =

TP

TP + FP
, Recall =

TP

TP + FN
,

F 1 =
2× Precision× Recall

Precision + Recall
.

(4.15)
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These metrics are computed via the seqeval package in Python, which evaluates entity

boundaries at the micro (global) level. In other words, a predicted entity is considered cor-

rect only if its boundaries exactly match those of the ground-truth entity. Unless otherwise

specified, we report the average performance over 5 random trials to reduce variance.

Implementation Details We adopt different PLMs, specifically, BERT variants, across

datasets to reflect common usage for each domain:

• bert-base-uncased [10] on CoNLL 2003, LaptopReview, and OntoNotes 5.0,

• bioBERT [156] on NCBI-Disease,

• SciBERT [157] on BC5CDR.

Although we do not specifically compare the effectiveness of various language models,

different domain-specific PLMs may yield further performance variations.

As we proposed in [49], we adopt an inductive evaluation: each model is trained on

the training set, validated on the development set, and evaluated on the test set. We use the

validation set for hyper-parameter tuning and early stopping. Moreover, we calculate the

WXOR scores on the union of the training and validation sets to ensure consistency with

prior work.

4.5.2 Autoregressive Zero-Shot Information Extraction

For the sake of clarity, we focus on the zero-shot NER subtask in this section. Readers

interested in zero-shot RE are referred to the G&O paper [61] for a detailed discussion and

experimental results.

Datasets To evaluate the zero-shot performance of G&O, we adopt 4 NER datasets cov-

ering both general and domain-specific corpora, thus providing a diverse test bed. Apart

from the aforementioned CoNLL 2003, NCBI-Disease, and BC5CDR datasets, we also

include:
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• PolyIE [52] is a newly introduced materials science dataset. It consists of 96 para-

graphs and 1,170 sentences, with 2,761 and 188 tokens, respectively. These passages

are annotated with three entity types: material name, property name, and

property value.

Since our goal is to test zero-shot capabilities, we use only the test sets of these corpora,

providing no task-specific fine-tuning data to the model.

Baselines We benchmark G&O against two autoregressive prompting methods:

• One-Step prompting consolidates all extraction steps into a single instruction, such as

“Identify all entities of the following types in the given text.” While specific prompts

vary, this one-step approach is commonly used in LLMs to elicit structured outputs.

It often incorporates a secondary “clean-up” phase to refine the extracted entities.

• All-Entity-in-One (AEiO) instructs the model to identify multiple entity types simul-

taneously (e.g., “Identify person, location, and organization entities in

the following paragraph.”). This differs from G&O primarily in how many entity

types are addressed at once.

Compared to these baselines, G&O employs a more structured, multi-step strategy, poten-

tially improving consistency and accuracy in extracting entities across different domains.

Metrics and Evaluation We report micro-averaged precision, recall, and F1 to quantify

system performance. However, unlike the previous settings, zero-shot extraction with au-

toregressive LLMs requires additional post-processing to map the model’s semi-structured

responses to specific entity spans in the source text. To mitigate errors caused by format

variations (e.g., additional spaces or rephrasings), we apply a fuzzy matching algorithm

from Python’s difflib library to align predicted entity strings with the original text.

Following [147], we evaluate under both full and partial span matching criteria:

• Full: The predicted span must exactly match the ground-truth entity boundaries.

• Partial: Any overlap between the predicted and ground-truth spans is counted as a
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Table 4.3: Weakly Supervised NER results, presented as “F1 (Precision / Recall)” in %.

Models CoNLL 2003 NCBI-Disease BC5CDR LaptopReview OntoNotes 5.0

BERT-NER 90.74 (90.37 / 91.10) 88.89 (87.05 / 90.82) 88.81 (87.12 / 90.57) 81.34 (82.02 / 80.67) 84.11 (83.11 / 85.14)
Best consensus 86.73 (98.62 / 77.39) 81.65 (99.85 / 69.06) 88.42 (99.86 / 79.33) 77.60 (100.0 / 63.40) 85.11 (97.35 / 75.61)
CHMM-FE 71.43 (72.89 / 70.02) 81.86 (90.75 / 74.55) 86.45 (91.73 / 81.75) 72.38 (88.13 / 61.41) 67.99 (65.23 / 71.00)

ConNet 66.02 (67.98 / 64.19) 63.04 (74.55 / 55.16) 72.04 (77.71 / 67.18) 50.36 (63.04 / 42.73) 60.58 (59.43 / 61.83)
MV 60.36 (59.06 / 61.72) 78.44 (93.04 / 67.79) 80.73 (83.79 / 77.88) 73.27 (88.86 / 62.33) 58.85 (54.17 / 64.40)
Snorkel 62.43 (61.62 / 63.26) 78.44 (93.04 / 67.79) 83.50 (91.69 / 76.65) 73.27 (88.86 / 62.33) 61.85 (57.44 / 66.99)
HMM 62.18 (66.42 / 58.45) 66.80 (96.79 / 51.00) 71.57 (93.48 / 57.98) 73.63 (89.30 / 62.63) 55.67 (57.95 / 53.57)

CHMM 63.22 (61.93 / 64.56) 78.74 (93.21 / 68.15) 83.66 (91.76 / 76.87) 73.26 (88.79 / 62.36) 64.06 (59.70 / 69.09)
Sparse-CHMM 71.53 (73.80 / 69.39) 82.24 (93.18 / 73.60) 86.63 (89.56 / 83.88) 75.90 (91.94 / 64.62) 64.85 (61.26 / 68.88)

correct prediction, allowing minor discrepancies (e.g., added or missing words).

For example, in the sentence “He’s working for the White House,” if the ground truth

labels “White House → Organization,” a predicted span of “the White House →

Organization” counts as a correct entity for partial matching but is penalized under

full matching due to the extra word “the” In both matching regimes, an incorrect type (e.g.,

labeling “White House” as Location) is considered incorrect.

Overall, the combination of partial and full match metrics, along with fuzzy matching,

provides a comprehensive view of model performance in challenging zero-shot settings.

4.6 Results and Analysis for Weakly Supervised Named Entity Recognition

4.6.1 Main Results

Table 4.3 presents a comparative evaluation of CHMM and Sparse-CHMM against baseline

models on the Wrench benchmark [49]. Notably, Sparse-CHMM outperforms all compet-

ing label models, achieving an average F1 score improvement of 3.01 points compared to

the strongest baseline. The performance gain of Sparse-CHMM predominantly stems from

an improvement in recall. Sparse-CHMM exhibits higher recall than even the best consen-

sus on 3 out of 5 datasets. This substantial enhancement can be attributed to the robust

emission structure of Sparse-CHMM, which effectively preserves correct annotations pro-

vided even by relatively weak LFs. This superior recall indicates that Sparse-CHMM can

successfully identify entities that are not explicitly observed by any LF, an ability enabled
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Figure 4.9: Emissions of LF “tag-CoreDictionaryExact” trained on NCBI-Disease with-
/without the additional MV LF.

by the precisely estimated token-wise transition probabilities within the model.

Interestingly, Sparse-CHMM consistently surpasses the performance of CHMM-FE,

despite the latter having access to ground-truth labels. This phenomenon occurs because

using ground-truth labels directly to construct emission matrices in CHMM-FE may not

always yield optimal model parameters. Moreover, the static emission matrices in CHMM-

FE disregard sentence-specific variations, thereby limiting the model’s ability to adaptively

handle contextual nuances. In contrast, Sparse-CHMM dynamically adjusts emission prob-

abilities according to the input sentences, better accommodating diverse linguistic patterns.

However, performance gaps between Sparse-CHMM and the best consensus are still

observable on more challenging datasets such as CoNLL 2003 and OntoNotes 5.0. No-

tably, even the CHMM-FE model struggles to achieve high performance on these bench-

marks. Beyond the inherent complexity due to the increased variety of entities and LFs,

the primary challenge arises from the quality of the LFs themselves. Many LFs on these

datasets have low recall, resulting in training dominated by the limited number of well-

performing LFs. Consequently, the model’s ability to leverage accurate annotations from

these higher-quality LFs is compromised.
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Table 4.4: Ablation F1 scores.

CoNLL NCBI BC5CDR Laptop OntoNotes

Sparse-CHMM 71.53 82.24 86.63 75.90 64.85

Training Stages

Sparse-CHMM S1 69.73 77.89 86.15 73.59 64.15
Sparse-CHMM S2 70.79 79.18 86.04 74.42 64.92

Model Components

Naı̈ve emiss 33.02 77.32 -* 71.77 -*

w/o hnsr 58.66 -* 86.48 75.38 64.69
w/o SoftMax 62.86 80.61 82.56 73.71 53.19
w/o Dirichlet 64.70 81.34 86.05 73.51 64.64
w/o S2 71.18 81.48 86.02 73.11 63.90
Merge S2 & S3 71.27 79.81 85.95 71.49 64.22

* The model fails training; the output labels are all “O”.

4.6.2 Training Stages

Table 4.4 summarizes the test performance across different training stages. Overall, these

results affirm the effectiveness of the proposed three-stage training strategy in enhancing

Sparse-CHMM’s performance. On BC5CDR, although a slight performance degradation

occurs in stage 2, the additional priors established during this stage are crucial for the

successful training of stage 3. Conversely, for OntoNotes 5.0, the modest performance

drop observed in stage 3 can be attributed to discrepancies between the training and test

datasets. Nevertheless, the consistent increase in validation F1 scores from stage 2 to stage

3 underscores the robustness of the proposed training stages.

4.6.3 Model Components

To assess the impact of individual model components, we conduct extensive ablation stud-

ies involving multiple variants of Sparse-CHMM:

1. Sparse-CHMM with naı̈ve emission matrices, where the reliability expansion func-

tion in Equation 4.5 is replaced by a uniform distribution across all non-diagonal

elements, thereby diminishing emphasis on emit-to-O probabilities;
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2. Sparse-CHMM w/o the scaling function hn,s,r, equivalent to either replacing Equa-

tion 4.3 with Ã = Â or setting the exponents n = s = 1;

3. Sparse-CHMM w/o the SoftMax function defined in Equation 4.2;

4. Sparse-CHMM w/o the Dirichlet sampling process during training;

5. Sparse-CHMM w/o stage 2 training or omitting the WXOR scores;

6. Sparse-CHMM trained with merged stages 2 and 3, meaning the transition parame-

ters remain unfrozen during stage 2.

Results presented in Table 4.4 clearly demonstrate that each individual component in-

troduced in subsection 4.3.1 significantly contributes to model performance. The naı̈ve

emission variant exhibits markedly poor performance, underscoring the necessity of the

carefully designed emission structure specified by Equation 4.4. Furthermore, the pres-

ence of both SoftMax and the scaling function hn,s,r is essential for accurately predicting

reliability scores. Omitting Dirichlet sampling results in a greater susceptibility to local

optima, hindering optimal convergence. Additionally, independently training each model

component through the sequential stages achieves notably better outcomes compared to

end-to-end training, highlighting the stability and effectiveness of the three-stage approach.

Figure 4.9 illustrates the critical role of incorporating the additional majority voting

LF. Without this MV LF, the model exhibits bias against certain presented LFs, particu-

larly failing to accurately assign reliability scores to observations labeled as B-Disease,

thus significantly reducing Sparse-CHMM’s F1 to 66.48. Conversely, introducing the MV

LF stabilizes reliability estimates, strengthens the emission structure, and significantly im-

proves the F1 to 82.24. Hence, the designed MV LF is essential for achieving optimal

performance on specific datasets.

4.6.4 Case Studies

Figure 4.10 provides a comparison between the emission matrices predicted by Sparse-

CHMM and the ground-truth matrices. Initially, Sparse-CHMM emphasizes the diagonal
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Figure 4.10: Emission probabilities of two LFs on CoNLL 2003.
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Figure 4.11: Illustration of the correlation between the predicted LF reliability scores and
the true LF F1 scores. Figure a is from the CoNLL 2003 dataset.

and emit-to-O values (the first column). Subsequently, the model refines its emission matri-

ces during stage two by incorporating the addon prior ∆, effectively highlighting prominent

off-diagonal values through enhanced Dirichlet parameters. Notably, despite the absence of

labeled data, Sparse-CHMM closely aligns its diagonal values with the true emission matri-

ces, demonstrating effective reliability estimation of LFs. These reliability scores not only

serve as critical insights into model behavior but also assist in auxiliary tasks, including LF

design and evaluation.

Further analysis investigates the correlation between predicted LF reliability and en-

tity F1 scores of LFs. Figure 4.11a visually depicts this relationship, while Figure 4.11b

quantitatively evaluates the correlation strength. The analysis reveals a robust correlation

between predicted reliability and actual F1 scores, achieving correlation coefficients ap-

proaching 1.0 across three datasets. Compared to CHMM, Sparse-CHMM shows superior

performance in accurately identifying unreliable LFs, a crucial capability for effectively

disregarding incorrect observations.

Interestingly, we notice a tendency of Sparse-CHMM to underestimate model reliability

scores. Although increasing parameters s and n in Equation 4.3 could theoretically correct

this underestimation, such adjustments inadvertently degrade overall model performance.
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This suggests that directly aligning emission matrix construction with F1 scores may re-

quire careful scaling or alternative approaches to maintain optimal predictive capabilities.

4.7 Results and Analysis for Autoregressive Zero-Shot Information Extraction

4.7.1 Main Results

Table 4.5 presents the partial and full matching F1 scores across different datasets. Overall,

G&O-NER consistently outperforms the One-Step approach under both evaluation metrics.

Specifically, decoupling task instructions from the organizational prompts leads to an av-

erage increase of 15.8% in partial-match F1 and 12.1% in full-match F1. Furthermore,

the superior performance of G&O compared to the AEiO baseline underscores the critical

role of explicitly crafted, entity-specific instructions. A detailed inspection of Figure 4.12

shows that G&O-NER notably improves precision without incurring a significant average

reduction in recall, compared to One-Step prompting. This precision enhancement can

be attributed to the natural language reasoning capability introduced by CoT, which en-

ables GPT-3.5 to internally verify and refine predictions, resulting in more accurate entity

extraction.

4.7.2 Comparison with Weak Supervision

When comparing the results presented in Table 4.5 with those in Table 4.3, a noticeable per-

formance gap emerges between autoregressive LLMs and weakly supervised NER models.

Although direct comparisons are inherently challenging—since weak supervision methods

rely on carefully designed additional LFs, which are more complex to create compared to

simple LLM prompts—it remains evident that autoregressive PLMs have limitations in dis-

criminative tasks with constrained label spaces. Given that LLMs also incur significantly

higher inference costs than weakly supervised models, we conclude that G&O-NER should

currently be viewed as a complementary strategy rather than a direct substitute for weakly

supervised NER models within pre-defined entity recognition tasks. This complementary
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Table 4.5: GPT-3.5 F1 on the NER datasets.

CoNLL 2003 BC5CDR NCBI Disease PolyIE Macro Average

Partial Full Partial Full Partial Full Partial Full Partial Full

AEiO 0.5370 0.4965 0.6199 0.5058 - - 0.1300 0.0935 0.4290 0.3653
One-Step 0.4741 0.4477 0.7030 0.6041 0.6500 0.5131 0.4669 0.3207 0.5735 0.4714

G&O-NER 0.6569 0.6192 0.7610 0.6079 0.6935 0.5047 0.5449 0.3823 0.6641 0.5285

− CoT 0.6572 0.6079 0.6634 0.5544 0.5653 0.4059 0.4551 0.3068 0.5853 0.4688
− clean-up 0.7003 0.6436 0.7421 0.5861 0.6475 0.4541 0.5103 0.3421 0.6501 0.5065
+ CR 0.6775 0.6394 0.7724 0.6186 - - 0.6011 0.4236 0.6837 0.5605
+ FT 0.7175 0.6800 0.7949 0.6838 0.7703 0.5507 0.7608 0.5533 0.7609 0.6170

relationship suggests that combining these methodologies could potentially leverage their

respective strengths effectively.

4.7.3 Ablation Studies

To assess the contribution of specific components within G&O, we conduct two ablation

studies focused on the effects of CoT prompting and the clean-up step. Removing the

CoT prompts results in an average partial-match F1 decrease of 11.87%, highlighting the

critical role of explicit reasoning in model performance. Similarly, omitting the clean-up

component leads to a modest average performance decline of 2.11%. Interestingly, while

the individual impact of these components is relatively limited or occasionally negative on

general datasets like CoNLL 2003, they yield substantial performance gains on scientific

datasets. This discrepancy occurs because LLMs frequently introduce extraneous terms in

scientific domains, a problem not typically observed in general entity recognition tasks such

as identifying person entities. The structured reasoning provided by CoT prompts proves

particularly beneficial in scientific contexts, where entities are inherently more complex

and nuanced.

79



0.3

0.4

0.5

0.6

0.7

0.8

0.9

CoNLL 2003 BC5CDR NCBI Disease PolyIE

Partial Match: Precision

One-Step G&O

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CoNLL 2003 BC5CDR NCBI Disease PolyIE

Partial Match: Recall

One-Step G&O

0.2

0.3

0.4

0.5

0.6

0.7

CoNLL 2003 BC5CDR NCBI Disease PolyIE

Full Match: Precision

One-Step G&O

0.2

0.3

0.4

0.5

0.6

0.7

CoNLL 2003 BC5CDR NCBI Disease PolyIE

Full Match: Recall

One-Step G&O

Figure 4.12: Precision and recall on NER datasets.
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Figure 4.13: F1 scores of differnt LMs with G&O and One-Step promptings, macro-
averaged on the all datasets.

4.7.4 Resolving Entity Type Conflict

Since G&O-NER processes entity types independently, it occasionally results in conflicting

labels for a single entity span. To handle these conflicts effectively, we evaluate two distinct

strategies:

1. Conflict Resolution (CR), which involves explicitly prompting the LLMs to resolve

entity-type conflicts as they arise; and
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2. BERT Fine-Tuning (FT), where we fine-tune a BERT-like encoder [10] using pseudo

labels generated by GPT.

As demonstrated in Table 4.5, both approaches significantly enhance the overall per-

formance of G&O-NER, with FT yielding the most pronounced improvements. Beyond

resolving type conflicts, FT serves as a robust filtering mechanism that effectively captures

stable patterns from GPT-generated pseudo labels, substantially reducing random noise and

improving prediction reliability.

4.7.5 Other Language Models

To evaluate the broader applicability of G&O, we examine its performance across 4 open-

source LLMs: Llama 2 7B/70B [158], Mistral 7B [19], and Mixtral 8x7B [159], using

their respective chat/instruct variants. As illustrated in Figure 4.13, G&O provides rela-

tively modest gains with Llama 2 models, which infrequently generate explicit reasoning.

Consequently, in these instances, G&O’s behavior closely resembles the simpler One-Step

prompting method and suffers more readily from error propagation. In contrast, G&O ef-

fectively leverages the advanced reasoning and conversational capabilities of Mi[s/x]tral

models, consistently producing clear, structured justifications that lead to notable improve-

ments over One-Step prompting. Thus, G&O is particularly advantageous for LLMs that

inherently emphasize multi-step reasoning and conversational coherence.

4.8 Conclusion

In this chapter, we addressed the challenges inherent in weakly supervised NER and ex-

plored the promising application of LLMs for structured IE. We introduced CHMM and

Sparse-CHMM, two advanced graphical models enhanced by NNs and PLM embeddings,

designed to aggregate weak annotations from multiple noisy NER LFs. Specifically, CHMM

employs PLM token embeddings and an MLPto estimate token-wise transition and emis-

sion probabilities within an HMM framework. Building upon CHMM, Sparse-CHMM fur-
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ther refines the emission probability estimation by leveraging sparse, sentence-level emis-

sion matrices derived from LF reliability predictions using PLM embeddings. To robustly

handle incorrect entity annotations, Sparse-CHMM incorporates WXOR scores, effectively

enhancing off-diagonal emission probabilities. Supported by a carefully structured three-

stage training strategy and Dirichlet sampling, Sparse-CHMM consistently surpasses all

baseline label models across five diverse datasets. Additionally, the estimated LF reliability

scores exhibit a strong correlation with actual LF performance, positioning Sparse-CHMM

as a valuable tool for auxiliary tasks, including automated LF generation and systematic

evaluation.

For autoregressive zero-shot IE, we introduced G&O, a straightforward yet powerful

framework designed to enhance structured prediction capabilities of LLMs. By decompos-

ing the information extraction task into distinct identification and formatting phases, G&O

allows LLMs to separately focus on recognizing relevant information and organizing it co-

herently. Evaluated in zero-shot settings with GPT-3.5, G&O significantly outperforms

conventional single-step prompting methods, affirming its effectiveness. Ablation studies

reinforce the importance of each stage and underscore the benefit of the two-step method-

ology, while additional experiments demonstrate G&O’s generalizability across multiple

LLMs. Performance improvements were further achieved by incorporating effective con-

flict resolution strategies, such as targeted prompting and fine-tuning, emphasizing G&O’s

potential as a versatile and scalable solution for structured IE tasks.

In summary, this chapter highlights the potential of combining advanced graphical mod-

els with LLMs to tackle the challenges of weakly supervised NER and structured IE. By

leveraging the strengths of both approaches, we pave the way for more accurate and ef-

ficient information extraction systems that can adapt to a variety of domains and applica-

tions.
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CHAPTER 5

ENSEMBLES OF LOW-RANK EXPERT ADAPTERS

5.1 Introduction

Building upon insights established in earlier chapters, this chapter explores effective and

efficient strategies for fine-tuning LLMs. Although general-domain LLMs such as GPT-4

[160, 17] and Llama [18] exhibit impressive capabilities across various tasks, achieving

optimal performance for specialized applications frequently necessitates targeted domain-

or task-specific fine-tuning. For example, instruction-following abilities typically require

additional tuning on specialized datasets to address nuances and contextual intricacies not

fully captured by general-purpose pre-training corpora [22]. Notable datasets used for

fine-tuning, such as Alpaca [161], the Pile [162], and Flan [163], highlight the substantial

effort dedicated to adapting LLMs to specialized domains and tasks, ranging from medical

diagnostics [164] to sophisticated CoT reasoning [20].

Nevertheless, fine-tuning LLMs on extensive, heterogeneous datasets introduces sig-

nificant challenges, particularly due to the issue of conflicting gradient directions [165, 62,

166]. Conflicting gradients arise because different subsets within the training data—even

those from a similar domain—can induce model parameter updates in divergent directions,

leading to slower convergence and potentially reducing overall model performance. Sev-

eral recent strategies have been proposed to mitigate this challenge: importance resampling

[167] adjusts training distributions to emphasize more beneficial samples, and targeted in-

struction tuning [62] selectively samples training instances based on gradient feature sim-

ilarities, isolating more compatible subsets. These approaches demonstrate that carefully

selecting subsets of training data can yield superior fine-tuning outcomes compared to train-

ing on the entire dataset. However, such methods typically rely heavily on task-specific fea-
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tures or labeled validation data, thus limiting their generalizability and effectiveness when

applied to novel tasks.

Rather than fitting a single model to the entire data distribution, MoE frameworks of-

fer an alternative solution by learning multiple specialized modules, often implemented as

LoRA experts [23, 168], and dynamically routing inputs to the most relevant expert during

inference [169, 170, 171]. Router mechanisms range from learned gating networks [172,

173] to domain-specific heuristics [174, 175], all aiming to optimize computational re-

sources by selectively activating only necessary subsets of experts. Concurrently, Deep

Ensemble methods [80, 176] have been explored to improve predictive performance and

uncertainty estimation through aggregating multiple models’ outputs [177, 178].

Inspired by these developments, we propose ELREA, an innovative ensemble frame-

work explicitly designed to tackle conflicting gradient directions encountered during LLM

fine-tuning, without dependence on task-specific assumptions. ELREA begins by training

a single base LoRA adapter across the entire dataset. Subsequently, it clusters training in-

stances based on the gradient impact they exert on this base module. Each resulting cluster

spawns a specialized LoRA expert initialized from the base adapter to preserve compu-

tational efficiency. At inference, ELREA dynamically combines the predictions of these

specialized experts by computing routing weights that measure the similarity between the

test input’s gradient profile and the respective cluster profiles. Leveraging insights from

Deep Ensemble methods [80, 176], these routing weights can be efficiently precomputed

and reused, ensuring negligible computational overhead at runtime. Crucially, ELREA

achieves notable data efficiency, as it requires no additional labeling or domain-specific

heuristics, making it especially well-suited for dynamic environments where tasks and data

distributions frequently change.

In summary, the key contributions and characteristics of ELREA include:

• Gradient-driven clustering: ELREA uses gradient profiles from a base LoRA adapter

to form specialized expert modules, enabling flexible and efficient adaptation to di-
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verse tasks without requiring additional labels or domain-specific features.

• Parameter-efficient specialization: By initializing from a shared base adapter, EL-

REA minimizes computational overhead while effectively resolving conflicting gra-

dients through dedicated, specialized experts.

• Efficient inference via ensemble routing: Lightweight, precomputed routing weights

ensure minimal runtime overhead, making ELREA practical for large-scale applica-

tions.

Extensive experimental evaluations demonstrate that ELREA consistently surpasses single-

adapter baselines and other MoE or self-consistency methods, providing a robust and prac-

tical solution for fine-tuning large-scale LLMs on heterogeneous datasets.

5.2 Preliminaries

5.2.1 Language Models and Parameter-Efficient Fine-Tuning

A PLM, denoted as M, learns the language patterns on extensive text corpora Dpre-train

through an unsupervised NTP objective, which minimized the negative NLL of a subse-

quent token xt in a length-T sequence x ∈ VT consisting tokens from the vocabulary V

based on the preceding context x<t:

LNTP(x) = −
T∑
t=1

logP (xt|x<t;θM), (5.1)

where θM are the network parameters of the LLM. Originally designed for text comple-

tion, the pretrained LLMs have been enhanced with instruction-following or task-specific

capabilities through targeted fine-tuning [22, 160, 17], expanding their utility across di-

verse applications. The fine-tuning process frequently adopts the ntp objective, utilizing

a smaller, specialized fine-tuning dataset Dft that consists of instruction-response pairs

xft = (xinstr,xresp).

Full-parameter fine-tuning of high-performing Language Models (LMs), which involves
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calculating ∇θMLNTP(x) and updating θM accordingly, is often impractical due to com-

putational constraints arising from their vast number of parameters. To address this issue,

Parameter-Efficient Fine-Tuning (PEFT) techniques have been developed [179, 180, 181],

with LoRA being a prominent example. LoRA introduces adapter θQ into the LM’s linear

layers whose weight matrices are, for example, Wi ∈ Rdmodel×dmodel , where i is the layer

index and dmodel is the model dimensionality as defined in [13]. LoRA approximates the

weight adjustments during fine-tuning using a low-rank decomposition ∆Wi ≈ AiB
T
i .

Here, Ai,Bi ∈ Rdmodel×r are rank-r adapter matrices with r ≪ dmodel. During fine-

tuning, the original weight matrices Wi remain frozen, and only the adapter parameters

θQ ≜
⋃

i{Ai,Bi} are updated to minimize the NLL loss: minθQ Lntp(x;θM + θQ). PEFT

significantly reduces the computational demands of fine-tuning by limiting gradient calcu-

lations to a smaller set of parameters.

5.2.2 Gradient Feature Calculation and Data Selection

Originally introduced by [182] to estimate the impact of individual training examples on

model performance, gradient-based data selection has been further applied to training data

selection [183, 62, 184, 185, 171]. Unlike methods based on surface-form textual fea-

tures—which utilize token statistics or sentence embeddings as selection criteria [126,

167], this approach employs parameter gradients ∇θ instead. Specifically, when fine-

tuning a LoRA expert Q using SGD, the gradient feature g(x) for each sequence x can

be computed as

g(x) ∈ R|θQ| = flatten
(
∇θQLNTP(x)

)
. (5.2)

flatten(·) denotes the operation that reshapes matrices into vectors and concatenates them.

Using this expression, we derive the trajectory influence of a training data point xft ∈

Dft, quantified by the inner product between its gradient feature and that of a task-specific

validation data point xvalid. This inner product is then accumulated across training epochs e,

each weighted by the average learning rate η(e) for that epoch:
∑E

e=1 η
(e)⟨g(xft), g(xvalid)⟩.
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By leveraging this formulation and adapting it to the Adam optimizer (subsection 5.3.2),

[62] demonstrate the efficacy of selecting a subset of training data with the highest influence

scores for task-specific fine-tuning, achieving performance comparable to that obtained

using the complete training dataset.

5.2.3 Mixture of Experts and Ensembles

MoE is an architecture that combines multiple expert models or network modules with

a gating network [186, 187]. In the context of LLMs, MoE was first adopted by [170]

for instruction-tuning and by [159] for LLM pre-training to reduce inference costs while

achieving performance comparable to dense networks. This idea has been further devel-

oped in subsequent works [188, 189, 190].

Upon receiving an input, the MoE’s gating network routes it to the relevant experts,

which could be an entire feed-forward Transformer block [159] or a fine-tuned LoRA ex-

pert [191, 192] for LMs. Routing could be either dense or sparse, depending on the fraction

of the total experts are activated. The selected experts process the input and provide their

outputs, which are aggregated at the end of the layer or block, typically through weighted

averaging, to produce the final result. This dynamic and selective activation of experts

ensures efficient computation and resource utilization. Mathematically, the output of a

mixture of M experts can be expressed as:

F(x) =
M∑

m=1

λm(x)Em(x);
M∑

m=1

λm(x) = 1,
∣∣{m|λm(x) ̸= 0}Mm=1

∣∣ ≤M, (5.3)

where Em is an expert model, and 0 ≤ λm ≤ 1 is its weight predicted by the gating network.

Here we extend the definition of x to any kind of layer input.

On the other hand, Deep Ensembles utilize a collection of multiple models with identi-

cal architecture that are trained independently with different parameter initializations [80,

193]. During inference, the last-layer predictions of these models, which could be either
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pre-activation logits or post-activation probabilities, are averaged to improve the overall

performance. Suppose we have N models {Mn}Nn=1 in the ensemble, the output would be:

Mens(x) =
1

N

N∑
n=1

Mn(x). (5.4)

The major differences between MoE and Deep Ensembles are two-fold: 1) MoE uses train-

able gating networks for model selection, while Deep Ensembles average uniform or pre-

defined weights; 2) MoE conducts output aggregation within layers or blocks, while Deep

Ensembles do so at the end of the model. Although MoE can achieve finer-grained routing

and potentially superior performance with careful design, Deep Ensembles, as both the-

oretically and empirically shown, remain the top approach for robustly improving model

performance in value prediction and uncertainty estimation, albeit at the cost of reduced

efficiency [80, 194, 104, 195, 196, 41].

5.3 Methodology

In this section, we introduce the pipeline of ELREA, designed to enhance the fine-tuning

of LLMs for improved downstream tasks by leveraging a mixture of LoRA experts in a

Deep Ensembles framework. The pipeline, shown in Figure 5.1, consists of three main

steps: 1) full-data adapter tuning, 2) gradient calculation, and 3) clustering and per-cluster

fine-tuning. During inference, we estimate the similarity between the gradient of test in-

structions and the cluster instances to determine the influence of each cluster on the final

prediction. The details of each step are elaborated below.

5.3.1 Full-Data Adapter Tuning

The first step involves fine-tuning a base LoRA expert Qbase from the backbone LMM on

the entire fine-tuning datasetDft for E epochs using the NTP objective (Equation 5.1). This

process captures a broader spectrum of general and task-specific knowledge and enhances
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the model’s basic instruction-following abilities. The adapted model checkpoints {M +

Q(e)
base}Ee=1, whereQ(e)

base denotes the adapter checkpoint at the end of training epoch e, along
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with the corresponding optimizer states, provide the necessary parameters to calculate the

gradient features [62].1

5.3.2 Gradient Calculation

With Adam optimizer [197], which is the most adopted for LM fine-tuning, the gradient

feature g(x) for each sequence x is extended from Equation 5.2 to consider the 1st and

2nd order momentum terms with decay rates β1 and β2, as derived by [62]:

g
(t)
Adam(x) = η(t) ·m(t)/(

√
v(t) + ϵ);

m(t) = (β1m
(t−1) + (1− β1)g)/(1− βt

1);

v(t) = (β2v
(t−1) + (1− β2)g

2)/(1− βt
2),

(5.5)

where t is the current training step and ϵ is a small constant to prevent division by zero.

Each training instance xft ∈ Dft is then associated with E gradients {g(e)
Adam(xft)}Ee=1, each

with the dimensionality of the number of total parameters in the adapter |θQ|.2

Although |θQ| ≪ |θM|, it is still at a million level scale, which is too large for efficient

clustering or similarity computation. Therefore, we follow [62] and apply random pro-

jection [198], which is derived from the Johnson-Lindenstrauss lemma [199] stating that

sufficiently high-dimensional data points can be projected into lower-dimensional space

while approximately preserves pairwise distances between the points, to reduce the dimen-

sionality of the gradient features to dproj ≪ |θQ|.

g′
Adam = RgAdam; R ∈ {−1, 1}dproj×|θQ|; Rij ∼ U({−1, 1}). (5.6)

For gradient feature clustering, we first average the gradient features of each instance

across all epochs to obtain a single representative feature vector, which is then normalized

1Here we extend the definition of the operator “+” between the backbone model and an adapter to denote
the addition of the weights of the corresponding network layers [23].

2We use the same rank for all adapters, so we do not emphasize the difference of adapters here.
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and projected into a (dproj − 1)-dimensional hyper-sphere:

δ(x) =
δ′(x)

∥δ′(x)∥
; δ′(x) =

1

E

E∑
e=1

g
′(e)
Adam(x) (5.7)

as we are only interested in the gradient directions rather than their magnitudes.

ELREA is developed under the assumption that the test distribution is entirely unknown

during fine-tuning. Therefore, for both fine-tuning and test instances, we only consider the

gradient of the instruction (i.e. user-input) tokens xinstr (subsection 5.2.1), excluding the

expected system responses even if they are provided in the training data, which is different

from [62] who construct the gradients based only on the expected model answers.

5.3.3 Clustering and Per-Cluster Fine-Tuning

We then cluster the training gradient features {δ(xft, instr)|xft, instr ∈ Dft} into K clusters

using the BIRCH algorithm [200]. The BIRCH algorithm is well-suited for large, high-

dimensional datasets and demonstrates robustness against outliers. To reduce computa-

tional demands, we randomly select 5,000 data points from Dft for model fitting. This

sample size adequately represents the feature distribution, and we use the resulting model

to cluster all gradient features. Preliminary experiments show that the clustering algorithm

is robust, i.e., it consistently produces identical or similar clusters when different random

seeds are used. As BIRCH does not ensure balanced clusters, we reapply it to clusters

exceeding five times the size of the smallest cluster. We iterate this process up to three

times, each iteration targeting fewer clusters. Initially targeting 5 clusters, this method typ-

ically yields between 8 (after two iterations) and 10 (after three iterations) training clusters

{Dc}Cc=1, where C denotes the final number of clusters.

Within each cluster Dc, we proceed with LoRA fine-tuning from the base checkpoint

Q(E)
base, extending for several more epochs at a reduced learning rate utilizing the same NTP

objective. This results in a collection of C LoRA experts {Qc}Cc=1. Theoretically, each
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cluster contains training instances with similar gradient directions, which likely exert anal-

ogous effects on the model’s behavior. Fine-tuning with clustered data aims to direct the

model towards a more precise update path, thereby potentially enhancing the model’s (i.e.,

M+Qc) performance on specific task types which are unidentified during fine-tuning.

5.3.4 Routing and Inference

To route an input instruction to appropriate expert adapters, we calculate the cosine sim-

ilarity between the gradient of the instruction δtest ≜ δ(xtest, instr) and the centroid of the

gradients within each cluster δ̄′
c = 1

|Dc|
∑

xi∈Dc
δ(xi,instr). The normalized form of δ̄c is

given by:

δ̄c =
δ̄′
c

∥δ̄′
c∥
; δ̄′

c =
1

|Dc|
∑
xi∈Dc

δ(xi,instr). (5.8)

Here, the cosine similarity simply becomes the inner product of these two normalized vec-

tors: cos(δtest, δ̄c) = ⟨δt, δ̄c⟩. When the projection dimensionality dproj is high, the similar-

ity may suffer from the curse of dimensionality, where the gaps between the similarities to

different cluster centroids may become too small. To address this issue, we standardize the

cosine similarities across clusters before employing a SoftMax function on the standardized

similarities cos′(δtest, δ̄c) across clusters to determine their respective weights:

wc =
exp(cos′(δtest, δ̄c))∑C

c′=1 exp(cos
′(δtest, δ̄c′))

; cos′(δtest, δ̄c) =
cos(δtest, δ̄c)− µtest

σtest
, (5.9)

where µtest and σtest are the mean and standard deviation of the cosine similarities across

clusters.

Besides the cluster-specific adapters {Qc}Cc=1, we also incorporate the base adapter

Qbase during inference to leverage the general knowledge captured from the entire dataset.

This is particularly crucial when the test instruction diverges significantly from all training

instances, indicated by maxc{cos(δtest, δ̄c)} < τ , where τ is some threshold. We quantify

the influence of the base adapter as wbase = 1−maxc{cos(δtest, δ̄c)}. Therefore, we assem-
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ble C + 1 adapters during inference, with the final prediction for the next token being the

ArgMax of the weighted sum of output logits from each adapter:

x̂t = argmax
xt

(
wbase(M+Qbase)(xt|x<t) +

C∑
c=1

wc(M+Qc)(xt|x<t)

)
, (5.10)

which is a combination of Equation 5.3 and Equation 5.4. xt is categorical, whileM(xt|x<t)

denotes the output pre-activation logit of categorical token xt given the context tokens x<t

from the language modelM. In Equation 5.10 we get x̂t, we append it to the context tokens

x<t+1 = (x<t, x̂t) for all adapters in the ensemble and repeat the process until the end of

the sequence is reached. As we are not dealing with probabilities here, the weights do not

need to sum to 1, i.e. wbase +
∑C

c=1 wc ̸= 1.

Unlike the LoRA MoE approaches (subsection 5.2.3), which utilizes a gating network

for layer-wise routing with predictions aggregated post-layer, ELREA resembles Deep En-

sembles in its routing and aggregation strategy but uses LoRA adapters as ensemble com-

ponents, and hence the name.

5.4 Experiment Setup

5.4.1 Datasets

We conduct experiments on two categories of tasks: 1) general language understanding

and reasoning, and 2) mathematical reasoning. Following [62], we use Flan V2 [163], CoT

[20], Dolly-15k [201], and OpenAssistant Conversations [202] for fine-tuning, and evaluate

on MMLU [203] and BIG-bench Hard (BBH; [127, 128]). These training and test sets have

no distribution overlap, enabling fair assessments of model generalization.

For mathematical reasoning, we unify GSM8k [50], MathQA [205], SVAMP [204],

and MATH [51] into the MATH-Combined dataset, formatted similarly to MATH. Since

MATH-Combined contains in-domain test points, it enables insights into how specialized

data selection affects fine-tuning. Please refer to section D.1 for dataset details and Ta-
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Table 5.1: Dataset statistics. The fine-tuning datasets are mixed together and randomly
shuffled before being used for model fine-tuning or clustering.

Dataset Source # Instance linstr
(a) lresp

(a)

General Language Understanding and Reasoning

Fine-Tune

Dolly-15k [201] 15,011 72.41 60.12
OpenAssistant [202] 55,668 20.14 113.09
CoT [20] 100,000 168.70 34.94
Flan V2 [163] 100,000 216.59 16.71

Test
BBH [128] 6,511 64.87(b) 105.51
MMLU [203] 14,042 88.53(b) 1

Mathematical Reasoning (MATH-Combined)

Fine-Tune & Test

MATH [51] 7,500 & 1,000 32.69 88.47
GSM8k [50] 7,441 & 1,000 45.19 56.93
SVAMP [204] 677 & 280 31.66 28.15
MathQA [205] 26,287 & 998 38.39 69.09

(a) These numbers represent the average number of words (character strings separated by
whitespace and newline characters) in the instruction and response sequences. They are
generally smaller than the number of tokens.
(b) These numbers do not include the in-context examples; if the examples are considered,
the counts will be approximately 3× larger for BBH and 5× larger for MMLU.

ble 5.1 for statistics.

5.4.2 Model and Fine-Tuning

We fine-tune the gemma-1.1-2b-it model [206] with rank-8 LoRA adapters on all

linear layers, modifying about 0.39% of the model parameters. For each task category,

we train the base adapter, Qbase, for 2 epochs using Adam with an initial learning rate of

5 × 10−5, decaying linearly to zero. Cluster-wise adapters, Qc, are initialized from Qbase

and fine-tuned for the same duration at a slightly lower learning rate of 2× 10−5. No task-

specific validation data are used. The maximum sequence length during training is 2,048

tokens, with a batch size of 16 sequences. Following [62], we set the gradient projection

dimensionality dproj to 8,192 for best performance. Additional details are in section D.2

and section D.3.
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5.4.3 Inference and Evaluation

For general reasoning tasks (BBH, MMLU), we employ up to three in-context examples

from BBH and five from MMLU, while mathematical reasoning (MATH-Combined) is

zero-shot. We limit instruction lengths to 1,200 tokens and responses to 848 for MATH-

Combined and BBH, and use 1,800 and 248 tokens for MMLU. If the total length exceeds

these limits, we reduce in-context examples. We decode greedily (temperature = 0) with the

largest feasible batch size. Accuracy is computed via parsing code from [51] for MATH-

Combined, and regular expressions for MMLU and BBH. Because our approach differs

from [206], final results may not match theirs.

5.4.4 Baselines

Our main baseline,M +Qbase, is trained on the entire dataset. M +Qdataset uses adapters

fine-tuned separately on each MATH-Combined subset. We also evaluate the backbone

M without fine-tuning. For MoE, we compare MoE Routing (layer-level routing with the

same weights as ELREA), MoE Merging through parameter averaging, and Mixture of

LoRA Experts (MoLE) [192], which adopts layer-wise gating. From ensembling methods,

Self-Consistency [132] runs five inference passes at temperature 1, while LoRA Ensembles

[177] trains three additional adapters and averages predictions. The Instruction Embedding

baseline replaces instruction gradients with pretrained sentence embeddings for clustering

and routing.

We also include two ablations: Random Cluster preserves cluster sizes but randomly

assigns training samples (approximating Deep Ensembles under equal training cost), and

Uniform Weights assigns equal inference weights to all clusters. See section D.4 for further

details.
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Table 5.2: Comparison of test set accuracies (in %) across various MATH-Combined sub-
sets, along with the micro-average. Gray rows indicate the primary baseline; blue rows
highlight ELREA.

LoRA Rank Methods MATH GSM8k SVAMP MathQA Average(a)

Gemma-2b

r = 8

M+Qbase 9.2 22.1 46.07 16.83 18.61
M+Qdataset 7.3 25.7 45.00 16.73 19.01 (+ 0.40)
MoE Routing 9.2 22.7 48.21 16.23 18.79 (+ 0.18)
MoE Merging 9.1 23.1 48.21 15.73 18.73 (+ 0.12)
MoLE 8.8 21.6 46.43 15.53 17.99 (− 0.62)
LoRA Ensembles 9.3 24.7 47.50 16.73 19.55 (+ 0.94)
Self-Consistency 5.9 14.3 44.64 10.32 13.12 (− 5.49)
Instruction Embedding 9.8 24.1 46.79 16.83 19.46 (+ 0.85)
ELREA 9.1 25.9 49.64 18.04 20.41 (+ 1.80)

Random Cluster 9.1 25.1 48.21 18.84 20.30 (+ 1.69)
Uniform Weights 9.6 25.2 47.50 18.04 20.16 (+ 1.55)

r = 64

M+Qbase 10.8 32.7 55.36 27.56 26.39
M+Qdataset 10.8 33.0 52.14 27.66 26.24 (− 0.15)
MoE Routing 11.7 31.9 60.36 26.95 26.66 (+ 0.27)
MoE Merging 11.4 32.0 60.36 26.85 26.57 (+ 0.18)
MoLE 10.7 31.7 56.07 25.35 25.49 (− 0.90)
LoRA Ensembles 12.1 31.8 60.00 28.06 27.06 (+ 0.67)
Self-Consistency 9.3 28.5 60.36 21.84 23.34 (− 3.05)
Instruction Embedding 11.2 31.7 60.71 28.46 26.94 (+ 0.55)
ELREA 12.5 32.6 57.86 28.36 27.33 (+ 0.94)

Random Cluster 11.5 32.8 59.64 27.05 26.87 (+ 0.48)
Uniform Weights 11.4 31.5 60.00 27.15 26.48 (+ 0.24)

Gemma2-9b

r = 8
M+Qbase 37.9 78.7 84.64 50.30 58.11
ELREA 37.4 78.6 86.43 52.00 58.60 (+ 0.49)

r = 64
M+Qbase 37.4 81.3 86.07 57.82 61.17
ELREA 36.8 80.7 87.50 59.32 61.38 (+ 0.21)

(a) The number in parentheses indicates the improvement over the corresponding baselineM+Qbase.
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Table 5.3: Comparison of test set exact-match accuracy (in %) on BBH and MMLU, and
the macro-averaged result. We also include the backboneM for reference.

LoRA Rank Methods BBH MMLU Macro Average

N/A BackboneM(a) 9.17 9.12 9.15

r = 8

M+Qbase 27.20 33.73 30.47
MoE Routing 27.46 (+ 0.26) 34.21 (+ 0.48) 30.84 (+ 0.37)
MoE Merging 27.13 (− 0.07) 33.98 (+ 0.25) 30.36 (+ 0.09)
MoLE 26.40 (− 0.80) 34.19 (+ 0.46) 30.30 (− 0.17)
Self-Consistency 23.74 (− 3.46) 32.88 (− 0.85) 28.31 (− 2.16)
Instruction Embedding 26.50 (− 0.70) 34.76 (+ 1.03) 30.63 (+ 0.16)
ELREA 28.03 (+ 0.83) 34.84 (+ 1.11) 31.44 (+ 0.97)

Random Cluster 27.72 (+ 0.52) 34.56 (+ 0.83) 31.14 (+ 0.67)
Uniform Weights 27.32 (+ 0.12) 34.33 (+ 0.60) 30.83 (+ 0.36)

(a) A large portion of responses are unparsable, leading to an accuracy lower than random guess.

5.5 Results and Discussion

5.5.1 Main Results

Table 5.2 summarizes the test set accuracy across different subsets of MATH-Combined

and presents micro-averaged results. ELREA consistently demonstrates superior perfor-

mance over baseline methods on most subsets, with only occasional, minor exceptions. On

average, ELREA achieves notable improvements of 9.67% and 3.56% overM + Qbase at

ranks r = 8 and r = 64, respectively, without requiring additional training data or external

knowledge sources.

Further evaluations shown in Table 5.3 reinforce ELREA’s robustness across general

language understanding and reasoning tasks, even when test conditions differ significantly

from those encountered during fine-tuning, echoing findings reported in [62]. An interest-

ing observation emerges when comparingM+Qdataset andM+Qbase: the former does not

consistently outperform the latter. This suggests that adopting a generalized knowledge-

extraction approach (illustrated in Figure D.1) may occasionally surpass dataset-specific

expert models, highlighting the value of broader knowledge integration.

Despite using precomputed routing weights, both the MoE Routing and Merging frame-
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works still show improvements over baseline models. This enhancement likely stems from

the ensemble benefits provided by combining multiple expert modules. Conversely, the

MoLE baseline, which incorporates a trainable router, consistently underperforms relative

toM + Qbase. We hypothesize that the complexity introduced by multiple LoRA experts

applied across numerous linear layers (as detailed in section D.2) creates a highly intricate

routing landscape. This complexity may hinder effective optimization, resulting in subopti-

mal solutions characterized by training data overfitting and poor generalization. Addressing

this challenge may necessitate more sophisticated network architectures or refined training

methodologies.

On the other hand, the classical LoRA Ensembles approach demonstrates consider-

able robustness, consistently outperformingM+Qbase despite higher computational costs.

These findings align with discussions in subsection 5.2.3, underscoring the strength and

effectiveness of ELREA’s ensemble strategy. In contrast, the Self-Consistency method

produces relatively poorer results due to significant variability across runs, particularly at

elevated sampling temperatures. Additionally, the Instruction Embedding baseline trails

ELREA, emphasizing the importance of precise gradient profiling to effectively extract

and leverage specialized expertise.

When evaluating the Gemma2-9b architecture, ELREA continues to outperform the

base adapter, albeit with a narrower performance margin. The inherently advanced capa-

bilities of Gemma2-9b for capturing task-specific knowledge without extensive fine-tuning

diminish the incremental benefits provided by ELREA [130]. This observation suggests

that ELREA’s advantages are more pronounced when the base model is less optimized for

the task at hand or when dealing with datasets characterized by greater complexity and

diversity.
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Table 5.4: The performance of ELREA with different clustering methods. The results use
Gemma-2b backbone, LoRA rank r = 64, and number of clusters C = 10.

Methods MATH GSM8k SVAMP MathQA Average

ELREA 12.5 32.6 57.86 28.36 27.33
BIRCH w/ 256-d PCA 10.3 32.1 60.00 26.95 26.27
K-means(a) 10.7 32.9 58.93 28.46 27.00
K-means w/o grad norm (Equation 5.7)(a) 10.8 32.3 58.21 27.56 26.51

(a) Both use 256-d Principal Component Analysis (PCA) for dimensionality reduction. Otherwise the
gradient outliers result in multiple clusters with few data points.
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Figure 5.2: Average weight distribution across clusters for different datasets and LoRA
ranks. Only relative values matter. “M-C” represents MATH-Combined.
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Figure 5.3: Effects of gradient projection dimensionality and selection of top-k experts
during inference on model performance.
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5.5.2 Ablation Studies

An examination of Table 5.2 and Table 5.3 reveals that the gradient-based clustering method

consistently achieves superior performance compared to random clustering. This empha-

sizes the effectiveness of gradient-based clustering in accurately isolating in-domain, task-

specific subsets of data for fine-tuning. Nevertheless, the performance advantage of EL-

REA over the Random Cluster baseline is occasionally modest. This outcome is expected

since Random Cluster essentially emulates a Deep Ensembles approach, a robust baseline

that leverages extensive and diverse training data effectively.

Furthermore, the relatively poor performance observed in the Uniform Weights baseline

underscores the critical role of a carefully engineered routing mechanism within ELREA.

Figure 5.2 illustrates the average cluster weight distribution, highlighting distinct patterns

across datasets. Specifically, the MATH-Combined test set exhibits a more balanced acti-

vation across experts, whereas BBH and MMLU display pronounced skewness toward one

or two dominant clusters. Such skewed distributions typically occur when test examples

closely align with only a small portion of the training data, possibly dominated by specific

clusters. This may partially explain why the LESS method, as in [62], can outperform

baseline approaches by strategically leveraging smaller but more relevant training subsets.

As noted by [62], the dimensionality of gradient projections (dproj) significantly im-

pacts the effectiveness of similarity-based matching between training and test instances.

Figure 5.3a confirms this finding within the context of ELREA. When reducing dproj from

8,192 to 512, a notable decline in exact-match accuracy occurs, likely due to the loss of

critical, fine-grained gradient information resulting from the random projection. Interest-

ingly, on the BBH dataset, this dimensionality reduction results in ELREA performing

worse than both the base adapter and the Random Cluster baseline. Moreover, Table 5.4

demonstrates that employing alternative dimensionality reduction methods such as PCA

or using k-means clustering instead of gradient-based clustering similarly reduces perfor-

mance. These findings collectively highlight the importance of maintaining representative
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gradient features for effective clustering and subsequent routing decisions; any simplifica-

tions or inappropriate dimensionality reductions significantly compromise model accuracy.

Additionally, Figure 5.3b illustrates how increasing the number of top-k experts se-

lected during inference generally enhances ELREA’s performance. This improvement

suggests that the model benefits from aggregating insights from a more diverse group of

experts, even when individual contributions may be minor. Nonetheless, selecting fewer

experts provides efficiency gains at inference time. Thus, carefully balancing the trade-off

between inference speed and performance becomes essential in practical deployments.

5.6 Conclusion

In this chapter we introduced ELREA, a framework designed to address the impact of

conflicting gradient directions during the fine-tuning of LLMs across diverse datasets for

data-efficient applications. ELREA develops multiple LoRA experts, each optimized for a

specific data cluster with similar gradient profiles. These adapters collaboratively generate

predictions by dynamically adjusting their contributions based on the input’s gradient char-

acteristics, effectively resolving gradient conflicts without the need for task-specific data

features or validation sets. With only one single training session, ELREA enhances the

adaptability of models to new or evolving tasks and outperforms traditional LoRA adapters

and other ensemble techniques across a variety of applications. Ablation studies confirm

that both the ensemble structure and the gradient-based clustering and routing mechanisms

are integral to ELREA’s effectiveness. These findings underscore the framework’s potential

for efficient and scalable application of LLMs in practical settings.
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CHAPTER 6

CONCLUSION

6.1 Summary

In this thesis, we investigated two fundamental directions towards building reliable and

data-efficient PLMs for a wide array of downstream tasks: We first focused on quantify-

ing confidence in PLMs, particularly in high-stakes domains such as healthcare, finance,

and materials science, where overconfident or miscalibrated models can lead to severe

consequences. In Chapter chapter 2, we introduced MUBen, a systematic benchmark-

ing framework for UQ in molecular property prediction. MUBen evaluates and compares

diverse UQ methods across multiple SOTA pre-trained molecular representation models,

thereby distilling best practices for building reliable, uncertainty-aware molecular mod-

els. Extending beyond discriminative settings, Chapter chapter 3 proposed UQAC, a novel

pipeline for confidence estimation in autoregressive LLMs. UQAC leverages an “attention

chain” mechanism to approximate the intractable marginalization over all possible reason-

ing paths, resulting in more robust and interpretable final-answer confidence scores.

We then turned our attention to methods that enable effective model adaptation when la-

beled data are scarce or expensive to acquire. In Chapter chapter 4, we tackled the zero-shot

NER problem, developing weak supervision methods—CHMM and Sparse-CHMM—to

integrate multiple weak LFs without requiring any manually labeled sequences. We also

explored G&O, which leverages autoregressive LLMs for zero-shot IE tasks. Finally, in

Chapter chapter 5, we introduced ELREA, a fine-tuning strategy that clusters training ex-

amples by gradient directions into distinct “expertise regions.” By training separate expert

adapters and automatically routing new inputs to the most appropriate adapter at inference

time, ELREA scales efficiently and mitigates the negative effects of conflicting gradient
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updates.

Collectively, these contributions form a minimally supervised and uncertainty-aware

toolkit for PLMs, addressing both the challenge of unreliable model outputs and the high

cost of obtaining large-scale labeled data. The thesis thereby aims to promote safer, more

transparent, and more accessible deployment of PLMs in real-world scenarios.

6.2 Future Works

While our research provides strong groundwork, several promising directions remain open

for future exploration:

Extending Uncertainty Quantification to New Settings Although our work has pri-

marily examined UQ in discriminative molecular tasks and autoregressive LLMs, many

PLMs operate in domains where data modalities go beyond textual or molecular inputs

(e.g., multimodal biomedical records, sensor-based time-series data). Developing scalable

UQ techniques that incorporate diverse data modalities and complex causal relationships

could lead to more robust decision-making in areas such as healthcare, autonomous driv-

ing, or materials discovery. Additionally, exploring tighter integration between UQ meth-

ods and instruction-tuned LLMs may further improve calibration and interpretability of

large-scale generative models.

Interactive and Human-in-the-Loop Approaches In addition, many real-world appli-

cations demand iterative and interactive analysis rather than one-shot predictions. It is

worth exploring a way of adopting the well-performed UQ systems to the data-efficient

training procedure, and how our frameworks can incorporate domain experts’ feedback to

refine model calibration and adapt to shifting data distributions on the fly. Incorporating

human insights on model reliability might strengthen the trustworthiness of PLMs and lead

to faster discovery cycles in scientific domains.
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In summary, we envision that the methodological contributions in this thesis—covering

UQ benchmarks, confidence estimation strategies for autoregressive LLMs, weak super-

vision approaches, and data-efficient fine-tuning—can serve as a robust foundation for

building more reliable, adaptable, and transparent PLMs. By addressing the challenges

of miscalibrated predictions and label scarcity, we hope to pave the way for a new genera-

tion of AI-driven solutions with broader utility and safer real-world deployment, ultimately

contributing to the continued integration of PLMs into high-stakes applications.
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Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
ser. Proceedings of Machine Learning Research, vol. 80, PMLR, 2018, pp. 2240–
2249.

[152] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models
are zero-shot reasoners,” in NeurIPS 2022, 2022.

[153] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma, “An explanation of in-context
learning as implicit bayesian inference,” in ICLR 2022, OpenReview.net, 2022.

[154] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition,” in HLT-NAACL 2003, 2003,
pp. 142–147.

119

https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2310.03668
https://arxiv.org/abs/2311.08526


[155] R. I. Dogan, R. Leaman, and Z. Lu, “NCBI disease corpus: A resource for dis-
ease name recognition and concept normalization,” J. Biomed. Informatics, vol. 47,
pp. 1–10, 2014.

[156] J. Lee et al., “BioBERT: a pre-trained biomedical language representation model
for biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240, Sep.
2019. eprint: https: / /academic.oup.com/bioinformatics/article- pdf/36/4/1234/
32527770/btz682.pdf.

[157] I. Beltagy, K. Lo, and A. Cohan, “SciBERT: A pretrained language model for scien-
tific text,” in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), Hong Kong, China: Association for Compu-
tational Linguistics, Nov. 2019, pp. 3615–3620.

[158] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat models,” CoRR,
vol. abs/2307.09288, 2023. arXiv: 2307.09288.

[159] A. Q. Jiang et al., “Mixtral of experts,” CoRR, vol. abs/2401.04088, 2024. arXiv:
2401.04088.

[160] OpenAI. “Introducing ChatGPT.” (Accessed on Jun 18, 2023). (2022), (visited on
06/18/2023).

[161] R. Taori et al., Stanford alpaca: An instruction-following llama model, https : / /
github.com/tatsu-lab/stanford alpaca, 2023.

[162] L. Gao et al., “The pile: An 800gb dataset of diverse text for language modeling,”
CoRR, vol. abs/2101.00027, 2021. arXiv: 2101.00027.

[163] S. Longpre et al., “The flan collection: Designing data and methods for effective
instruction tuning,” in International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, A. Krause, E. Brunskill, K. Cho, B.
Engelhardt, S. Sabato, and J. Scarlett, Eds., ser. Proceedings of Machine Learning
Research, vol. 202, PMLR, 2023, pp. 22 631–22 648.

[164] K. Singhal et al., “Towards expert-level medical question answering with large
language models,” CoRR, vol. abs/2305.09617, 2023. arXiv: 2305.09617.

[165] Z. Wang, Y. Tsvetkov, O. Firat, and Y. Cao, “Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models,” in 9th In-
ternational Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, OpenReview.net, 2021.

120

https://academic.oup.com/bioinformatics/article-pdf/36/4/1234/32527770/btz682.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/4/1234/32527770/btz682.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2401.04088
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2305.09617


[166] S. Chen, Z. Jie, and L. Ma, “Llava-mole: Sparse mixture of lora experts for miti-
gating data conflicts in instruction finetuning mllms,” CoRR, vol. abs/2401.16160,
2024. arXiv: 2401.16160.

[167] S. M. Xie, S. Santurkar, T. Ma, and P. Liang, “Data selection for language mod-
els via importance resampling,” in Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., 2023.

[168] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora: Efficient fine-
tuning of quantized llms,” in Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, A. Oh, T. Naumann, A.
Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., 2023.

[169] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to trillion pa-
rameter models with simple and efficient sparsity,” J. Mach. Learn. Res., vol. 23,
120:1–120:39, 2022.

[170] S. Shen et al., “Flan-moe: Scaling instruction-finetuned language models with sparse
mixture of experts,” CoRR, vol. abs/2305.14705, 2023. arXiv: 2305.14705.

[171] L. Yang et al., “Solving token gradient conflict in mixture-of-experts for large
vision-language model,” CoRR, vol. abs/2406.19905, 2024. arXiv: 2406.19905.

[172] T. Luo et al., “Moelora: Contrastive learning guided mixture of experts on parameter-
efficient fine-tuning for large language models,” CoRR, vol. abs/2402.12851, 2024.
arXiv: 2402.12851.

[173] D. Li et al., “Mixlora: Enhancing large language models fine-tuning with lora based
mixture of experts,” CoRR, vol. abs/2404.15159, 2024. arXiv: 2404.15159.

[174] M. Muqeeth, H. Liu, Y. Liu, and C. Raffel, “Learning to route among special-
ized experts for zero-shot generalization,” in Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, OpenRe-
view.net, 2024.

[175] Y. Liu et al., “Intuition-aware mixture-of-rank-1-experts for parameter efficient
finetuning,” CoRR, vol. abs/2404.08985, 2024. arXiv: 2404.08985.

[176] M. Havasi et al., “Training independent subnetworks for robust prediction,” in 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, OpenReview.net, 2021.

121

https://arxiv.org/abs/2401.16160
https://arxiv.org/abs/2305.14705
https://arxiv.org/abs/2406.19905
https://arxiv.org/abs/2402.12851
https://arxiv.org/abs/2404.15159
https://arxiv.org/abs/2404.08985


[177] X. Wang, L. Aitchison, and M. Rudolph, “Lora ensembles for large language model
fine-tuning,” CoRR, vol. abs/2310.00035, 2023. arXiv: 2310.00035.

[178] J. Lu, Z. Pang, M. Xiao, Y. Zhu, R. Xia, and J. Zhang, “Merge, ensemble, and
cooperate! A survey on collaborative strategies in the era of large language models,”
CoRR, vol. abs/2407.06089, 2024. arXiv: 2407.06089.

[179] N. Houlsby et al., “Parameter-efficient transfer learning for NLP,” in Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, K. Chaudhuri and R. Salakhutdinov, Eds.,
ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 2790–
2799.

[180] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for gener-
ation,” in Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural Lan-
guage Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event,
August 1-6, 2021, C. Zong, F. Xia, W. Li, and R. Navigli, Eds., Association for
Computational Linguistics, 2021, pp. 4582–4597.

[181] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig, “Towards a unified
view of parameter-efficient transfer learning,” in The Tenth International Confer-
ence on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022,
OpenReview.net, 2022.

[182] G. Pruthi, F. Liu, S. Kale, and M. Sundararajan, “Estimating training data influ-
ence by tracing gradient descent,” in Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Had-
sell, M. Balcan, and H. Lin, Eds., 2020.

[183] Y. Gou et al., “Mixture of cluster-conditional lora experts for vision-language in-
struction tuning,” CoRR, vol. abs/2312.12379, 2023. arXiv: 2312.12379.

[184] X. Pan, L. Huang, L. Kang, Z. Liu, Y. Lu, and S. Cheng, “G-DIG: towards gradient-
based diverse and high-quality instruction data selection for machine translation,”
CoRR, vol. abs/2405.12915, 2024. arXiv: 2405.12915.

[185] Z. Liu, R. Ke, F. Jiang, and H. Li, “Take the essence and discard the dross: A re-
thinking on data selection for fine-tuning large language models,” CoRR, vol. abs/2406.14115,
2024. arXiv: 2406.14115.

[186] P. T. Szymanski and M. D. Lemmon, “Adaptive mixtures of local experts are source
coding solutions,” in Proceedings of International Conference on Neural Networks

122

https://arxiv.org/abs/2310.00035
https://arxiv.org/abs/2407.06089
https://arxiv.org/abs/2312.12379
https://arxiv.org/abs/2405.12915
https://arxiv.org/abs/2406.14115


(ICNN’88), San Francisco, CA, USA, March 28 - April 1, 1993, IEEE, 1993, pp. 1391–
1396.

[187] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the EM algo-
rithm,” Neural Comput., vol. 6, no. 2, pp. 181–214, 1994.

[188] T. Zhu et al., “Llama-moe: Building mixture-of-experts from llama with continual
pre-training,” CoRR, vol. abs/2406.16554, 2024. arXiv: 2406.16554.

[189] D. Dai et al., “Deepseekmoe: Towards ultimate expert specialization in mixture-of-
experts language models,” CoRR, vol. abs/2401.06066, 2024. arXiv: 2401.06066.

[190] F. Xue et al., “Openmoe: An early effort on open mixture-of-experts language mod-
els,” CoRR, vol. abs/2402.01739, 2024. arXiv: 2402.01739.

[191] S. Dou et al., “Loramoe: Revolutionizing mixture of experts for maintaining world
knowledge in language model alignment,” CoRR, vol. abs/2312.09979, 2023. arXiv:
2312.09979.

[192] X. Wu, S. Huang, and F. Wei, “Mixture of lora experts,” CoRR, vol. abs/2404.13628,
2024. arXiv: 2404.13628.

[193] A. Gleave and G. Irving, “Uncertainty estimation for language reward models,”
CoRR, vol. abs/2203.07472, 2022. arXiv: 2203.07472.

[194] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson, “Loss
surfaces, mode connectivity, and fast ensembling of dnns,” in Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
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Appendix A

Benchmarking Molecular

Representation Uncertainties

A.1 Dataset Details

In this section, we provide details about the datasets used in our study. We follow the ap-

proach of previous works [105, 29] and select a subset of widely used and publicly available

datasets from the MoleculeNet benchmark [67]. The datasets cover both classification and

regression tasks from 4 property categories, including Physiology, Biophysics, Physical

Chemistry and Quantum Mechanics. The classification datasets include:

• BACE provides binary binding properties for a set of inhibitors of human β-secretase

1 (BACE-1) from experimental values from the published papers;

• BBBP (Blood-Brain Barrier Penetration) studies the classification of molecules

by their permeability of the blood-brain barrier;

• ClinTox consists of two classification tasks for drugs: whether they are absent of

clinical toxicity and whether they are approved by the FDA;

• Tox21 (Toxicology in the 21st Century) consists of qualitative toxicity measure-

ments of 8,014 compounds on 12 different targets;
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• ToxCast provides toxicology data of 8,576 compounds on 617 different targets;

• SIDER (Side Effect Resource) contains marketed drugs and adverse drug reactions

(ADR) extracted from package inserts;

• HIV, introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral Screen,

contains compounds that are either active or inactive against HIV replication;

• MUV (Maximum Unbiased Validation), a challenging benchmark dataset selected

from PubChem BioAssay for validation of virtual screening techniques, contains

93,087 compounds tested for activity against 17 different targets.

The regression datasets include:

• ESOL provides experimental values for water solubility data for 1,128 compounds;

• FreeSolv (Free Solvation Database) contains experimental and calculated hydration

free energies for 643 small molecules;

• Lipophilicity contains experimental results of octanol/water distribution coefficient

for 4,200 compounds;

• QM7/8/9 are subsets of GDB-13 and GDB-17 databases containing quantum me-

chanical calculations of energies, enthalpies, and dipole moments for organic molecules

with up to 7/8/9 “heavy” atoms, respectively. For QM9, we follow previous works

and select 3 tasks that predict properties (homo, lumo, and gap) with a similar quan-

titative range out of the total 12 [105, 29].

A summary of the dataset statistics is provided in Table 2.3. It is worth noting that

some datasets, such as HIV and MUV, exhibit a high degree of class imbalance. This

characteristic adds further challenges to the tasks of molecular property prediction and

uncertainty quantification.

Scaffold Splitting MUBen primarily utilizes a dataset split based on molecule scaffolds,

effectively segregating training, validation, and test sets to maximize feature separation.

This approach generates OOD test sets, crucial for assessing the model’s ability to handle



patterns not encountered during the fine-tuning process. We adhere to the standard 8:1:1

ratio for training, validation, and test splits across all datasets. The raw datasets can be

accessed on the MoleculeNet website.1 Additionally, we employ the pre-processed versions

provided by [29], using the identical dataset splits outlined in their study.2

Random Splitting To investigate the impact of dataset splitting methods, we conducted

experiments on 4 classification datasets (BACE, BBBP, ClinTox, Tox21) and 4 regression

datasets (ESOL, FreeSolv, Lipophilicity, QM7) using random splitting. Despite their rel-

atively small sizes, these datasets provide a reliable representation of model performance.

Each dataset was divided into three separate training-validation-test sets with an 8:1:1 ra-

tio, utilizing random seeds of 0, 1, and 2. We trained each backbone-UQ combination once

per split and averaged the results across the three runs to establish the final metrics for

each dataset. Deep Ensembles was the only exception; it underwent three training cycles

per dataset split, using different seeds, resulting in a total of 9 training cycles per dataset.

All other training configurations remained consistent with those used in the scaffold-split

experiments.

Binning Test Data by Similarity to Training Scaffolds Our experimental analysis is

conducted exclusively on the QM9 dataset due to its ample volume of test data, ensuring

a statistically significant number of samples within each defined bin for reliable outcomes.

Initially, the dataset is partitioned into training, validation, and test sets using scaffold splits.

We then compute the average Tanimoto similarity between each test data point and the

unique training scaffolds (1,096 in total). Test data points are sorted and grouped into 5

bins based on descending similarity scores, with the most similar points placed in the first

bin. The average Tanimoto similarities for these 5 bins are 0.116, 0.103, 0.093, 0.084,

and 0.066, respectively. During the experiments, each combination of backbone and UQ

1https://moleculenet.org/
2https://github.com/dptech-corp/Uni-Mol/tree/main/unimol

https://moleculenet.org/
https://github.com/dptech-corp/Uni-Mol/tree/main/unimol


model is trained once on the training dataset and then tested separately across each of the

bins. This process is repeated three times using random seeds 0, 1, and 2, with the results

averaged across these runs. For the Deep Ensembles method, these three runs are integrated

into a single ensemble, considered equivalent to a single run.

A.2 Backbone Models and Implementation Details

Our experimental code is designed on the PyTorch framework [207]. The experiments are

conducted on a single NVIDIA A100 Tensor Core GPU with a memory capacity of 80GB.

The backbone models are fine-tuned using the AdamW optimizer [208] with a weight decay

rate of 0.01 using full-precision floating-point numbers (FP32) for maximum compatibil-

ity. We apply different learning rates, numbers of training epochs and batch sizes for the

backbone models, as specified in the following paragraphs. We adopt early stopping to

select the best-performed checkpoint on the validation set, and all models have achieved

their peak validation performance before the training ends. ROC-AUC is selected to assess

classification validation performance. For regression, we follow [67] and use RMSE for

Physical Chemistry properties and MAE for Quantum Mechanics. Notice that these met-

rics only concern prediction, and do not take the uncertainty into account during validation

steps. Table 2.1 presents the number of parameters and average time per training step for

each backbone model. The training time is calculated for each model update step instead of

each epoch based on our implementation, which might be slower than the models’ original

realizations. Below, we offer a detailed description of each backbone model’s architecture

and its implementation.

ChemBERTa ChemBERTa [26, 35] leverages the RoBERTa model architecture and pre-

training strategy [209] but with fewer layers, attention heads, and smaller hidden dimen-

sionalities. Unlike language models which process sentences in natural language, Chem-

BERTa uses Simplified SMILES [34] strings as input. This representation is a compact and



linear textual depiction of a molecule’s structure that’s frequently employed in cheminfor-

matics. ChemBERTa pre-training adopts a corpus of 77M SMILES strings from PubChem

[210], along with the MLM objective [10].

ChemBERTa is built with the HuggingFace Transformers library [211], and its pre-

trained parameters are shared through the Huggingface’s model hub. We retain the de-

fault model architecture and use the DeepChem/ChemBERTa-77M-MLM checkpoint for

ChemBERTa’s weight initialization.3 We employ the last-layer hidden state corresponding

to the token [CLS] to represent the input SMILES sequence and attach the output heads

specified by the tasks/UQ methods on top of it for property prediction. On all datasets,

ChemBERTa is fine-tuned with a learning rate of 10−5, a batch size of 128, and for 200

epochs. A tolerance of 40 epochs for early stopping is adopted.

GROVER GROVER [36] is pre-trained on 11 million unlabeled molecules represented

as 2D molecular graphs, sourced from ZINC15 [212] and ChEMBL [213]. This model

enhances pre-training by integrating MPNN [84], a GNN-based method, into Transformer

encoder architectures. GROVER employs self-supervised learning objectives that reflect

different levels of molecular structural complexity to capture detailed structural and se-

mantic information. Specifically, it replaces the linear layers that map the input query, key,

and value vectors in each multi-head attention module of the Transformer encoder with a

dynamic MPNN, which aggregates latent features from k-hop neighboring nodes, where k

is a random integer chosen from a predefined uniform or Gaussian distribution. In essence,

GROVER integrates GNN layers before each head’s self-attention process to more effec-

tively encode the molecular graph structure. To aid learning, GROVER introduces training

objectives such as contextual property prediction, which estimates the statistical properties

of masked subgraphs of varying sizes, and graph-level motif prediction, which identifies

the classes of masked functional groups. A readout function is used to aggregate node

features, which are subsequently processed by linear layers for property prediction.

3https://huggingface.co/DeepChem/ChemBERTa-77M-MLM.

https://huggingface.co/DeepChem/ChemBERTa-77M-MLM


For implementation, we use the GROVER-base checkpoint for our model initializa-

tion.4 We incorporate the “node-view” branch as discussed above and disregard the “edge-

view” architecture detailed in the appendix of [36], in accordance with the default settings

in their GitHub repository. Under this configuration, the model generates 2 sets of node

embeddings (but no edge embeddings), one from the node hidden states and another from

the edge hidden states [36]. Each set of embeddings is passed into 2 linear layers with

GELU [214] activation and a dropout ratio of 0.1 post-readout layer, which simply aver-

ages the embeddings in the default configuration. Each set of embeddings corresponds to

an individual output branch, predicting the properties independently. In line with the orig-

inal implementation, we compute the loss for each branch individually during fine-tuning

and apply a squared Euclidean distance regularization with a coefficient of 0.1 between

the two. During inference, we average the logits from the 2 branches to generate the final

output logits. Our implementation of GROVER does not incorporate external RDKit or

Morgan fingerprints, diverging from the authors’ original implementation.

In our experiments, we configure the fine-tuning batch size at 256, and the number of

epochs at 100 with a tolerance of 40 epochs for early stopping. The learning rate is set

at 10−4, and the entire model has a dropout ratio of 0.1. We substitute the original Noam

learning rate scheduler [13] with a linear learning rate scheduler with a 0.1 warm-up ratio

for easier implementation. No substantial differences in model performance were observed

between the two learning rate schedulers.

Uni-Mol Uni-Mol [29] is a universal molecular representation framework that enhances

representational capacity and broadens applicability by incorporating 3D molecular struc-

tures as model input. For the property prediction task, Uni-Mol undergoes pre-training

on 209M 3D conformations of organic molecules gathered from ZINC15 [212], ChEMBL

[213], and a database comprising 12M purchasable molecules [29]. It portrays atoms as

tokens and utilizes pair-type aware Gaussian kernels to encode the positional information

4https://github.com/tencent-ailab/grover

https://github.com/tencent-ailab/grover


in the 3D space, thereby ensuring rotational and translational invariance. Furthermore,

Uni-Mol introduces a pair-level representation by orchestrating an “atom-to-pair” com-

munication, updating positional encodings with query-key products, and a “pair-to-atom”

communication, adding pair representation as bias terms in the self-attention atom update

procedure. For pre-training, Uni-Mol employs masked atom prediction, akin to BERT’s

MLM, corrupting 3D positional encodings with random noise at a 15% ratio. Additionally,

the model is tasked with restoring the corrupted Euclidean distances between atoms and

the coordinates for atoms.

Our codebase is developed atop the publicly accessible Uni-Mol repository and their

pre-trained checkpoint for molecular prediction serves as our model initialization. During

fine-tuning, Uni-Mol generates 10 sets of 3D conformations for each molecule, supple-

mented with an additional 2D molecular graph. Thereafter Uni-Mol samples one from

these 11 molecular representations for each molecule at the beginning of every training

epoch as the input feature. For inference, we average the logits from all 11 representa-

tions to generate the final output. We utilize the conformations prepared by the Uni-Mol

repository in our implementation.

We configure the fine-tuning batch size at 128, the number of epochs at 100, and employ

early stopping with a tolerance of 40 epochs. We use a linear learning rate scheduler with

a 0.1 warm-up ratio and a peak learning rate of 5 × 10−5. The model is trained with

a dropout ratio of 0.1. Although the Uni-Mol repository provides a set of recommended

hyperparameters, we observe no discernible improvement in model performance with these

settings.

DNN DNN serves as a simple, randomly initialized baseline model designed to explore

how heuristic descriptors like Morgan fingerprints [215] or RDKit features perform for

molecular property prediction. DNN enables us to compare the pre-trained models, which

learn the molecular representation automatically through self-learning, with heuristic molec-



ular features, which are constructed manually, and investigate whether or under what cir-

cumstances the heuristic features can achieve comparable results. For the descriptor, we

adopt the approach of previous work [67, 216, 36] and extract 200-dimensional molecule-

level features using RDKit for each molecule, which are then used as DNN input.5 The

DNN consists of 8 fully connected 128-dimensional hidden layers with GELU activation

and an intervening dropout ratio of 0.1. We find no performance gain from deeper or wider

DNNs and thus assume that our model is fully capable of harnessing the expressivity of

RDKit features. The model is trained with a batch size of 256 and a constant learning rate

of 2× 10−4 for 400 epochs with an early stopping tolerance of 50 epochs.

TorchMD-NET The architectural design of TorchMD-NET is detailed in [92], while

its pre-training methodology is discussed in a separate study [93]. TorchMD-NET is

an equivariant Transformer tailored for the prediction of quantum mechanical properties

of 3D conformers. Unique elements of its architecture include a specialized embedding

layer—encoding not just atomic numbers but also the interatomic distances influenced by

neighboring atoms, a modified multi-head attention mechanism that integrates edge data,

and an equivariant update layer computing atomic interactions. The model undergoes pre-

training on the 3.4M PCQM4Mv2 dataset [217, 218], leveraging a denoising auto-encoder

objective. This entails predicting Gaussian noise disturbances on atomic positions, mirror-

ing techniques seen in prevalent diffusion models in computer vision [219].

To implement TorchMD-NET, we sourced the code and model checkpoint from [93].6

We made minor architectural adjustments, replacing their single-head output block with

our adaptive multi-head output layers. Consequently, we omitted the denoising objective

during the fine-tuning process due to compatibility concerns. Our fine-tuning regimen for

TorchMD-NET entails a batch size of 128 over 100 epochs, adopting an early stopping

mechanism with the patience of 40 epochs. The learning rate peaks at 2 × 10−4, coupled

5We use the rdkit2dnormalized descriptor in DescriptaStorus, available at
https://github.com/bp-kelley/descriptastorus.

6https://github.com/shehzaidi/pre-training-via-denoising

https://github.com/bp-kelley/descriptastorus
https://github.com/shehzaidi/pre-training-via-denoising


Table A.1: Impact of the number and dimensionality of hidden layers across various
datasets. The selected hyper-parameters generally achieve reasonable performance, al-
though they may not be optimal for all datasets.

Number of Layers (Dimension: 128) Layer Dimensionality (Number of Layers: 5)

Dataset: Metric 3 Layers 4 Layers 5 Layers 6 Layers 64 Dim 128 Dim 256 Dim 512 Dim

BBBP: ROC-AUC ↑ 0.5736 0.6233 0.6284 0.6223 0.5876 0.6284 0.6255 0.5977
Tox21: ROC-AUC ↑ 0.6644 0.6774 0.6832 0.6901 0.6584 0.6832 0.6924 0.6962

ESOL: RMSE ↓ 1.6741 1.664 1.6017 1.6383 1.9951 1.6017 1.6167 1.5868
FreeSolv: RMSE ↓ 2.3296 2.2348 2.1362 2.5788 4.0666 2.1362 2.8263 3.1005

with a linear scheduler with a 0.1 warm-up ratio, and the model trains with a dropout ratio

of 0.1.

GIN Graph Isomorphism Network GIN [94] is a randomly initialized model with 2D

graph structures as input. Compared with Graph Convolutional Networks (GCNs) [220],

GIN mainly differs in that within the neighboring nodes message aggregation process, GIN

adds a weight to each node’s self-looping, which is either trainable or pre-defined. In

addition, GIN substitutes the one-layer feed-forward network within each GCN layer with

a MLP. It has been proved in theory that these minor changes make GIN among the most

powerful graph neural networks [94].

We use the Pytorch Geometric [221] to realize GIN. Our implementation contains 5

GIN layers with 128 hidden units and 0.1 dropout ratio. A study of the hyperparameters

of GIN is presented in Table A.1. The model is trained with a batch size of 128 for 200

epochs with an early stopping tolerance of 50 epochs, at a constant learning rate of 10−4.

A.3 Uncertainty Quantification

A.3.1 Method and Implementation Details

Focal Loss First proposed by [95], Focal Loss is designed to address the class imbalance

issue for dense object detection in computer vision, where the number of negative samples

(background) far exceeds the number of positive ones (objects). It is adopted for uncertainty



estimation and model calibration later by [96]. The idea is to add a modulating factor to

the standard cross-entropy loss to down-weight the contribution from easy examples and

thus focus more on hard examples. In the binary classification case, it adds a modulating

factor |yn − p̂n|γ to the standard cross-entropy loss, where yn ∈ {0, 1} is the ground truth

label, p̂n ∈ (0, 1) is the predicted Sigmoid probability for the n-th example, and γ ≥ 0 is a

focusing parameter:

Lfocal = −
1

N

N∑
n=1

[yn(1− p̂n)
γ log p̂n + (1− yn)p̂

γ
n log(1− p̂n)] . (A.1)

The focusing parameter γ smoothly adjusts the rate at which easy examples are down-

weighted. When γ = 0, Focal Loss is equivalent to the cross-entropy loss. As γ increases,

the effect of the modulating factor increases likewise. In our implementation, we take

advantage of the realization in the torchvision library and use their default hyperpa-

rameters for all experiments.7

Bayes by Backprop BBP [97, 222] is an algorithm for training BNNs, where weights

are not point estimates but distributions. The idea is to replace the deterministic network

weights with Gaussian a porteriori learned from the data, which allows quantifying the un-

certainty in the predictions by assembling the predictions from random networks sampled

from the posterior distribution of the weights:

WMAP = argmax
W

log p(W |D) = argmax
W

(log p(D|W ) + log p(W )) , (A.2)

where p(W ) is the prior distribution of the weights, which are also Gaussian in our real-

ization.

However, the true posterior is generally intractable for neural networks and can only be

approximated with variational inference q(W |θ) [98], where θ are variational parameters,

7https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid focal loss.html.

https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid_focal_loss.html


which consist of the multivariate Gaussian mean and variance in our case. The learning

then involves finding the θ that minimizes the KLD between the true posterior and the

variational distribution. The loss can be written as

L = DKL (q(W |θ)||p(W ))− Eq(W |θ)[log p(D|W )]. (A.3)

For each training step i, we first draw a sample from a porteriori Wi ∼ q(W |θ) and

then compute the Monte Carlo estimation of the loss:

Li ≈ log q(Wi|θ)− log p(Wi)− log p(D|Wi). (A.4)

During backpropagation, the gradient can be pushed through the sampling process with

the reparameterization trick [98]. Specifically, we adopt the local reparameterization trick

[222], which samples the pre-activation ai directly from the distribution q(ai|xi) parame-

terized by the input feature xi, instead of computing the is as ai = Wixi using the sampled

network weights. This has parameters that are deterministic functions of xi and θ, which

reduces the variance of the gradient estimates and can improve the efficiency of the learn-

ing process. Following the common practice [223], we only apply BBP to the models’

output layer to reduce computational costs and optimization difficulty for large pre-trained

backbone models. In addition, The last layer often directly relates to the task’s uncertainty.

Modeling uncertainty in this layer can provide practical benefits in decision-making pro-

cesses, allowing for an estimation of confidence in the predictions. During inference, we

sample 30 networks from the posterior distribution, generating 30 sets of prediction results,

and computing the mean of the predictions as the final output.

SGLD SGLD [99] combines the efficiency of SGD with Langevin diffusion which in-

troduces the ability to estimate parameter a posteriori. The update rule for SGLD is given



by:

∆θ = −ηt
2
∇L(θ) +√ηtϵ, (A.5)

where θ is the network parameters, ηt is the learning rate at time t, and ϵt is the standard

Gaussian noise. With learning rate θ or weight gradient ∇L(θ) decreasing to small val-

ues, the update rule can transit from network optimization to posterior estimation. After

sufficient optimization, subsequent samples of parameters can be seen as drawing from the

posterior distribution of the model parameters given the data.

In our implementation, we follow the previous implementation and use a constant learn-

ing rate.8 Similar to BBP, we only apply SGLD to the last layer of the model. We first train

the model until its performance has stopped improving on the validation set, and then con-

tinue training it for another 30 epochs, resulting in 30 networks sampled from the Langevin

dynamics. This generates 30 sets of prediction results during the test, and we compute the

mean of the predictions as the final output.

MC Dropout Compared to other Bayesian networks, MC Dropout [79] is a simple and

efficient for modeling the network uncertainty. Dropout is proposed to prevent overfitting

by randomly setting some neurons’ outputs to zero during training [224]. At test time,

dropout is deactivated and the weights are scaled down by the dropout rate to simulate the

presence of all neurons. In contrast, MC Dropout proposes to keep dropout active during

testing and make predictions with dropout turned on. By running several (e.g., 30 in our

experiments) forward passes with random dropout masks, we effectively obtain a Monte

Carlo estimation of the predictive distribution.

SWAG SWAG [101] is an extension of the Stochastic Weight Averaging [102] method, a

technique used for finding wider optima in the loss landscape and leads to improved gen-

eralization. SWAG fits a Gaussian distribution with a low rank plus diagonal covariance

8https://github.com/JavierAntoran/Bayesian-Neural-Networks/.

https://github.com/JavierAntoran/Bayesian-Neural-Networks/


derived from the SGD iterates to approximate the posterior distribution over neural net-

work weights. In SWAG, the model keeps tracking the weights encountered during the last

T steps of the stochastic gradient descent updates and computes the Gaussian mean and

covariance:

µθ =
1

T

T∑
t=1

θt;

Σθ =
1

T

T∑
t=1

(θt − µθ)(θt − µθ)
T.

(A.6)

However, such computation requires storing all the model weights in the last T steps, which

is expensive for large models. To address this issue, [101] propose to approximate the co-

variance matrix with a low-rank plus diagonal matrix, and compute the mean and covari-

ance iteratively. Specifically, at update step t ∈ {1, . . . , T},

θ̄t =
tθ̄t−1 + θt

t+ 1
; θ2

t =
tθ2

t−1 + θ2
t

t+ 1
; D̂:,t = θt − θ̄t, (A.7)

where θ̄0 is the best parameter weights found during training prior to the SWA session,

θ2
T − θ̄2

T is the covariance diagonal, and 1
T−1

D̂D̂T ∈ Rd,d is the low-rank approximation

of the covariance matrix with d being the parameter dimensionality. We can write the

Gaussian weight posterior as

θSWAG ∼ NSWAG

(
θ̄T ,

1

2

(
θ2

T − θ̄2
T +

1

T − 1
D̂D̂T

))
. (A.8)

Notice that D̂ has a different rank K <= T in [101], but we set K = T < d for simplicity.

Uncertainty in SWAG is estimated by drawing weight samples from NSWAG and running

these through the network. We set T = 20, and draw 30 samples during the test in our

experiments.

Temperature Scaling TS [82, 39] is a simple and effective post-hoc method for calibrat-

ing the confidence of a neural network. Post-hoc methods calibrate the output probabilities



of a pre-trained model without updating the fine-tuned network parameters. The core idea

behind TS is to add a learnable parameter h (the temperature) to adjust the output proba-

bility of the model. For a trained binary classification model, TS scales the logits z with

z′ =
z

h
(A.9)

before feeding z′ into the Sigmoid output activation function. The temperature h is learned

by minimizing the negative log-likelihood of the training data with other network parame-

ters frozen. For multi-task classification such as Tox21, we assign an individual tempera-

ture to each task.

In precise terms, “Temperature Scaling” is introduced for multi-class classification uti-

lizing SoftMax output activation [39]. For binary classification in our study, we implement

Platt Scaling, excluding the bias term [82]. Nonetheless, we continue using “Temperature

Scaling” (TS) for its widespread recognition.

Deep Ensembles Deep Ensembles [80] is a technique where multiple deep learning mod-

els are independently trained from different initializations, and their predictions are com-

bined to make a final prediction. This approach exploits the idea that different models will

make different types of errors, which can be reduced by averaging model predictions, lead-

ing to better overall performance and more robust uncertainty estimates [104]. Formally,

given M models in the ensemble, each with parameters θm,m ∈ {1, . . . ,M}, the ensemble

prediction for an input data point x is given by:

ŷ =
1

M

M∑
m=1

ŷm =
1

M

M∑
m=1

f(x;θm) (A.10)

where f represents the model architecture, and ŷm is the post-activation result of the m-th

model. We set M = 3 for QM8, QM9 and MUV to reduce computational consumption,

and M = 10 for other scaffold split datasets. For random split, we uniformly use M = 3.



For regression tasks, [80] aggregate the variances of different network predictions through

parameterizing a Gaussian mixture model. In contrast, we take a simpler approach by com-

puting the mean of the variances as the final output variance.

A.3.2 Resource Analysis

Table 2.2 summarizes the additional training cost to apply each UQ method to a backbone

model already fine-tuned for property prediction. From the table, we can see that post-

hoc calibration and MC Dropout are the most efficient methods, while Deep Ensembles is

undoubtedly the most expensive one, even though it performs the best most of the time.

Several works aim to reduce the computational cost [225, 226], but we do not consider

them in MUBen and leave them to future works.



Appendix B

Language Model Uncertainty

Quantification

B.1 Notations

Table B.1 and Table B.2 summarizes the notations and definitions used in this chapter.

B.2 UQAC Details

B.2.1 Attention Re-Weighting
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Figure B.1: Averaged attention
weights.

As discussed in subsection 3.3.1, to mitigate the

inherent bias of LLMs toward emphasizing more

recent context, we apply a sequence of decreas-

ing re-weighting factors γ ∈ [0, 1]C to adjust the

attention weights corresponding to the most re-

cent C tokens. To obtain these re-weighting fac-

tors, we first compute an average attention vector

α. Specifically, we randomly select 1,000 samples
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Table B.1: Summary of Notations and Definitions (Continued in Table B.2)

Category Notation Definition

Sets & Spaces

V Vocabulary set.
Vstop Set of stop words.
N[1,N ] Set of natural numbers from 1 to N .
S Reduced reasoning space.
∅ Empty set.

Tokens & Sequences

x A sampled token.
x A random token variable.
x A sampled token sequence/vector.
x A random sequence variable.

xinstr Instruction sequence.
xresp Response sequence.
xcot Reasoning (CoT) sequence.
xans Answer token sequence.
x
(z)
src Source sequence/set at backtracking step z.

x
(z)
tgt Target sequence/set at backtracking step z.

xattn Attention chain token sequence.
x′

attn Similarity-filtered attention chain sequence.

Attention Bachtracking

α
(l,h)
T Attention weights at step T in layer l, head h.
α′ Re-weighted attention weights.
α∗

T Aggregated attention weights at step T .
γ Re-weighting factors.
φ Cumulative attention weights from all source tokens.
w Similarity vector.

Probabilistic Metrics

P Exact probability.
P̃ Approximated probability.
P Length-normalized approximated probability.
H Entropy measure.



Table B.2: Summary of Notations and Definitions (Continued)

Category Notation Definition

Numbers & Indices

Linstr Length of the instruction sequence.
Lresp Length of the response sequence.
Lcot Length of the reasoning sequence.
Lans Length of the answer sequence.
Lattn Length of the attention chain.
L′

attn Length of the similarity-filtered attention chain.
Ltgt Length of the target sequence/set.
t Token index in a sequence.
T Index of the latest predicted token during inference.

i, j, k Generic indices (context-dependent).
l, h Layer and head indices in modelM.
L,H Total number of layers and heads in modelM.
z Attention backtracking step index.
s, e Position indices in source/target sequences or sets.
ts, te Specific token positions in source and target sequences.
C Number of tokens selected for re-weighting.
θ Attention weight threshold.

Functions

f(·) Step-wise attention backtracking function.
I(·) Indicator function.
| · | Cardinality of a set/sequence/vector.
∥ · ∥ 2-norm of a vector.

sim(·, ·) Cosine similarity.

Operators

⊕ Concatenation of sequences.
⊏ Proper subsequence relation (non-consecutive allowed).
⊑ Subsequence relation.
·T Transpose of a vector or matrix.
·T Exponentiation by T .
·(T ) Superscript T .

argmink a Index of the k-th smallest element in vector a.
argmaxk a Index of the k-th largest element in vector a.

ai A vector from {a1,a2, . . . } indexed by subscript i.
ai,[j] j-th element in the vector ai.
ai,[\j] Subvector/subset of ai excluding the j-th element.
ai,[j,k] Subvector of ai from the j-th to k-th elements (inclusive).



from the GSM8k training partition and use Llama-

3.2-1B to generate answers for each sample. We then average the attention weights from

all heads and layers for the last 50 tokens in each generated response:

α ∈ [0, 1]50 =
1

HLLresp

H∑
h=1

L∑
l=1

Linstr+Lresp∑
t=Linstr+1

α
(h,l)
t,[t−50:t]. (B.1)

To simplify subsequent analysis, we reverse the order of the computed average attention

weights, placing the most recent token at the first position, i.e., α[i] ← α[50−i]. Next, we

project α into a two-dimensional space, with the y-axis representing attention weights and

the x-axis representing token indices. We then fit a linear regression line that passes through

the points (C +1, α[C+1]) and (⌊(50−C)/2⌋, α[⌊(50−C)/2⌋]). This regression line is defined

as:

g(i) = α[C+1] +
α[⌊ 50−C

2
⌋] − α[C+1]

⌊50−C
2
⌋ − (C + 1)

(i− (C + 1)). (B.2)

Subsequently, each re-weighting factor γ[i] is calculated as:

γ[C−i+1] =
g(i)

α[i]

∀i ∈ N[1,C]. (B.3)

We emphasize that the resulting γ values are approximations, as high precision is not crit-

ical for this adjustment. Consequently, we adopt these GSM8k and Llama-3.2-1B-derived

factors universally across all models and datasets. In our experiments, we consistently set



C = 10, yielding the following re-weighting factors:

γ =



0.93925344

0.87378443

0.81274293

0.73914525

0.67549127

0.59304059

0.46061748

0.32959151

0.20938152

0.16644488



, (B.4)

which is hard-coded in our implementation. The averaged attention weights and the fitted

line are visualized in Figure B.1.

B.3 Datasets and Processing

Our implementation separates answer generation from the uncertainty quantification step.

Once an answer is generated, we first extract and evaluate it to verify its correctness. If no

answer is extracted, the instance is excluded from the UQ evaluation. Next, we subsample

the instances to balance the number of correct and incorrect predictions, ensuring a reliable

estimation of the calibration metrics. Specifically, if the number of correct predictions is

lower than that of incorrect ones, we randomly sample a matching number of incorrect

predictions. If both groups exceed 500 instances, we randomly select 500 instances from

each group. Although this step does not affect the UQ scores, it does influence both the

AUROC and ECE metrics. Therefore, we repeat the subsampling process five times and

report the mean and standard deviation of the results.



Appendix C

Weakly Supervised Named Entity

Recognition

C.1 Training Objective

In this section, we focus on the computation of the expected complete data log likelihood

Q defined in (Equation 4.14) as well as the training objective. We skip some trivial steps

and explanations. (Equation 4.14) can be write as:

Q(θ,θold) =
L∑
i=1

p(z(0) = i|x(1:T ), e(0:T )) log p(z(0) = i)+

T∑
t=1

L∑
i=1

L∑
j=1

p(z(t−1) = i, z(t) = j|x(1:T ), e(0:T )) logΨ
(t)
i,j+

T∑
t=1

L∑
i=1

p(z(t) = i|x(1:T ), e(0:T )) logφ
(t)
i ,

(C.1)

where Ψ is the transition matrix. p(z(0)) is the probability of the initial hidden state without

any corresponding observations. As we can predict the token-wise transition matrix from

the embeddings, we can simply set it to Uniform or, as [59, 60] proposed, set p(z(0) = 1)

to 1 and p(z(0) = i),∀i ∈ 2 : L to 0.
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To calculate (Equation C.1), we define the smoothed marginal γ(t) ∈ [0, 1]L as:

γ
(t)
i ≜ p(z(t) = i|x(1:T ), e(0:T )),

and the expected number of transitions ξ(t) ∈ [0, 1]L×L as:

ξ
(t)
i,j ≜ p(z(t−1) = i, z(t) = j|x(1:T ), e(0:T )).

These two variables are acquired using the forward-backward algorithm.

First, we define the filtered marginal α ∈ [0, 1]L as:

α
(t)
i ≜ p(z(t) = i|x(1:t), e(0:T )),

and the conditional future evidence β ∈ [0, 1]L as:

β
(t)
i ≜ p(x(t+1:T )|z(t) = i, e(0:T )).

In the forward pass, α(t)
i is computed iteratively:

α
(t)
i ∝ p(x(t)|z(t) = i, e(0))p(z(t) = i|x(1:t−1), e(0:t))

=
L∑

j=1

φ
(t)
i Ψ

(t)
j,iα

(t−1)
j ,

which can be written in the matrix form:

α(t) ∝ φ(t) ⊙ (Ψ(t)Tα(t−1)),

where ⊙ is the element-wise product. We initialize α with α
(0)
l = p(z(0) = l),∀l ∈ 1 : L

since we have no observation at time step 0.



Similarly, we do the backward pass and compute β:

β
(t−1)
i =

L∑
j=1

p(z(t) = j,x(t),x(t+1:T )|z(t−1) = i, e(0,t:T ))

=
L∑

j=1

β
(t)
j φ

(t)
j Ψ

(t)
i,j .

In the matrix form, it becomes:

β(t−1) = Ψ(t)(φ(t) ⊙ β(t)),

with base case:

β
(T )
i = p(x(T+1:T )|z(T ) = i) = 1,∀i ∈ 1 : L.

With α and β calculated, γ(t)
i and ξ

(t)
i,j can be written as:

γ
(t)
i ∝ p(z(t) = i|x(1:t), e0:t)p(x(t+1:T )|z(t) = i, e(0,t+1:T ))

= α
(t)
i β

(t)
i ,

ξ
(t)
i,j ∝ p(z(t−1) = i|x(1:t−1)e(0:t−1))p(x(t)|z(t) = j, e(0))

p(x(t+1:T )|z(t) = j, e(0,t+1:T ))p(z(t) = j|z(t−1) = i, e(t))

= α
(t−1)
i φ

(t)
j β

(t)
j Ψ

(t)
i,j .

Written in the matrix form, they become:

γ(t) ∝ α(t) ⊙ β(t),

ξ(t) ∝ Ψ(t) ⊙ (α(t−1)(φ(t) ⊙ β(t))T).

Eventually, we insert γ and ξ into (Equation C.1) to compute the value of Q. The

training objective is to maximize Q, which can be readily done using the gradient ascend.

Please refer to [59] for more details.



Appendix D

Ensembles of Low-Rank Expert

Adapters

D.1 Datasets

To evaluate the effectiveness of ELREA, we conducted experiments across two distinct

categories: 1) general language understanding and reasoning, and 2) mathematical reason-

ing. Each category utilizes its own dedicated training and evaluation datasets, as detailed

in Table 5.1.

General Language Understanding and Reasoning For the first category, we followed

the methodologies outlined in [62] and [227]. We employed a diverse combination of

datasets for fine-tuning our model:

• Flan V2 [163]: This comprehensive collection encompasses over 1,800 NLP tasks,

combining numerous existing datasets with various data augmentations. The tasks

cover a wide range of NLP problems, including question answering, summarization,

translation, and sentiment analysis.

• Chain-of-Thought (CoT) [20, 163]: A subset of the Flan V2 collection, the CoT

dataset includes tasks annotated with chain-of-thought reasoning steps. It emphasizes
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the model’s ability to generate intermediate reasoning processes, enhancing perfor-

mance on complex tasks that require multi-step reasoning.

• Dolly-15k [201]: This curated dataset contains approximately 15,000 high-quality,

human-generated prompt-response pairs designed specifically for instruction tuning

of LLMs. Created by Databricks employees, it focuses on instruction-following capa-

bilities across a variety of domains and task types.

• OpenAssistant Conversations [202]: A multilingual, human-generated, and human-

annotated assistant-style conversation corpus featuring fully annotated conversation

trees in different languages. For our experiments, we utilize only the supervised fine-

tuning portion of this dataset, excluding any content related to reward modeling or

reinforcement learning.

These datasets vary significantly in size, format, tasks, and domains, providing a com-

prehensive training ground for general language understanding and reasoning. Specifically,

Flan V2 and CoT datasets contribute to the model’s ability to handle a wide range of NLP

tasks with enhanced reasoning capabilities, while Dolly-15k and OpenAssistant Conversa-

tions improve the model’s instruction-following and conversational skills. In practice, we

directly use the pre-processed dataset provided by [62], which consolidates these datasets

into a unified format suitable for fine-tuning.1

For testing, we utilize two challenging benchmark datasets to evaluate the general rea-

soning and problem-solving abilities of our model:

• Massive Multitask Language Understanding (MMLU; [203]): MMLU is a com-

prehensive evaluation benchmark that assesses a model’s knowledge and reasoning

across 57 subjects, including humanities, sciences, social sciences, and more. The

dataset consists of over 19,000 multiple-choice questions designed to mimic the diffi-

culty of an average professional or college-level exam. Each question has four answer

options, and the dataset provides only the correct answer without any accompanying

1Available at https://huggingface.co/datasets/princeton-nlp/less data.

https://huggingface.co/datasets/princeton-nlp/less_data


reasoning or explanation.

• BIG-Bench Hard (BBH; [127, 128]): BBH is a subset of the BIG-Bench, consisting

of 23 tasks identified as particularly challenging for LLMs. The tasks cover a diverse

range of domains such as logical reasoning, mathematics, commonsense reasoning,

etc.. Unlike MMLU, BBH includes not only the correct answers but also detailed CoT

reasoning annotations for each question. This allows for the assessment of a model’s

ability to perform complex reasoning and generate intermediate reasoning steps.

Both datasets predominantly feature difficult multiple-choice question-answering for-

mats with diverse question types, and only a few require numerical responses. The in-

clusion of reasoning chains in BBH enables a more in-depth evaluation of the model’s

reasoning capabilities compared to MMLU, which focuses solely on the final answers.

Importantly, there is no significant overlap between the training datasets and these test

datasets, ensuring that the evaluation measures the model’s ability to generalize to unseen

tasks and domains. To facilitate the desired output formatting and to guide the model dur-

ing inference, we provide up to three in-context examples from the validation subset of the

BBH dataset and five examples from MMLU dataset. These examples serve as prompts to

help the model understand the expected answer format and improve its performance on the

evaluation tasks.

Mathematical Reasoning For the mathematical reasoning category, we developed the

MATH-Combined dataset by integrating several existing mathematical problem-solving

resources into a unified format analogous to the MATH dataset [51], including

• GSM8K [50]: A dataset containing 8,000 high-quality grade school math word prob-

lems that require multi-step reasoning to solve. Each problem includes a question and

a detailed step-by-step solution.

• MathQA [205]: Originally a multiple-choice dataset derived from the AI2 Arithmetic

and the DeepMind Mathematics datasets, MathQA consists of over 37,000 math word



problems across various topics. Each problem comes with a question, multiple-choice

answers, and annotated solution programs.

• SVAMP [204]: A dataset designed to test the robustness of math word problem solvers

by introducing subtle variations to existing problems. It contains 1,000 problems that

require careful reasoning to avoid common pitfalls.

• MATH [51]: A collection of 12,500 challenging competition-level math problems

covering subjects like algebra, geometry, calculus, and more. Each problem includes

a question and a detailed solution formatted in LATEX.

To create a consistent and unified dataset, we process the inputs from GSM8K, MathQA,

and SVAMP to match the format of the MATH dataset. We utilize Claude 3 Sonnet [228]

to reformulate the final answers into a specified format, specifically using the “\boxed{}”

command to enclose final answers. For MathQA, which is originally in a multiple-choice

format, we retain only the correct answers and reformat them into value prediction tasks.

This standardization ensures that all problems across the datasets have a uniform presenta-

tion, facilitating knowledge transfer and model training. During the processing, the refor-

matted outputs generated are compared to the original answers to ensure accuracy. If the

model fail to produce the correct answer after five attempts, those instances are discarded

to maintain the dataset quality.

Unlike the first category of general language understanding and reasoning, the fine-

tuning and test datasets in MATH-Combined are similarly distributed. This alignment al-

lows us to gain insights into the effectiveness of selecting task-specific data for fine-tuning,

as it enables us to assess how well the model performs on tasks that closely resemble its

training data. To manage computational resources efficiently, we sub-sample the test in-

stances to approximately 1,000 problems per dataset. Preliminary experiments show that

it provides a representative enough evaluation of the model’s performance while reducing

the computational burden.



D.2 Model Configurations

Our primary experiments utilize Gemma-2b [206], which contains 2.5 billion network

parameters, as the core framework for their relative efficiency in training and inference.

Specifically, we employ the instruction-tuned variant gemma-1.1-2b-it, known for its

efficiency in smaller-scale settings. We also conduct experiments with the larger and more

advanced Gemma2 model gemma-2-9b-it [130] to investigate the impact of backbone

model representativeness on the relative performance.2 For the LoRA modifications, we

default to a rank r = 8 across all linear layers in the model (i.e., {q_proj, k_proj, v_-

proj, o_proj, up_proj, down_proj, gate_proj}), which count as about 0.39%

of the total network parameters. In a separate experiment targeting the MATH-Combined

dataset, we also explore the impact of increasing the rank to r = 64. The adapter’s scaling

factor α and dropout rate are consistently set to α = 4r and pdropout = 0.1, respectively. The

architecture for cluster-wise adaptersQc mirrors that of the base adapterQbase to streamline

implementation. We typically set the gradient projection dimensionality to dproj = 8192,

but also include experiments with dproj = 512 to investigate the impact of dimensionality

reduction on model performance.

Due to license restrictions, we are unable to use LLaMA-series models [18] for our

experiments.

D.3 Fine-Tuning

For both dataset categories, we fine-tune the base adapter Qbase for 2 epochs using the

Adam optimizer, with an initial learning rate of 5 × 10−5 that linearly decays to zero.

Preliminary testing indicates that 2 epochs optimize performance for Qbase, ensuring a fair

comparison with our method. We also observe a strong tendency toward overfitting beyond

2Available at https://huggingface.co/google/gemma-2-9b-it.

https://huggingface.co/google/gemma-2-9b-it


this point, as indicated by the loss value and gradient norm curve. Cluster-wise adaptersQc

undergo an identical duration of fine-tuning at a slightly reduced learning rate of 2× 10−5.

These hyperparameters, derived from prior experience, are fixed without adjustments to

preemptively accommodate unseen test data, diverging from the methods of [62]. Most

fine-tuning sessions are conducted on an computing instance equipped with 8 NVIDIA

A100 40GB GPUs, employing 4-bit quantization for the backbone model M and bf16

precision for adapters Q. This setup essentially uses QLoRA [168] rather than LoRA, but

we do not specifically distinguish them as they both belong to the LoRA family and do not

impact our conclusions. Additional training sessions utilize instances with 8 NVIDIA V100

32GB GPUs, using fp16 precision. We observe no difference in performance between these

configurations apart from training speed. The maximum token sequence length for training

is 2,048, with a batch size of 16 sequences distributed across the GPU instances. Only a

few (< 100 for each dataset category using the Gemma-2b tokenizer) of training sequences

are longer than this threshold, and we simply discard these instances.

D.4 Baselines

Our primary baseline is the base LoRA adapter M + Qbase, which is fine-tuned on the

complete dataset for 2 epochs to achieve optimal performance, as detailed in Section sec-

tion D.3. Additionally, we consider a dataset-wise adapter M + Qdataset for MATH-

Combined, where the adapter is fine-tuned and applied to each test subset individually. For

instance,M+QMATH is fine-tuned on the MATH training subset of MATH-Combined and

evaluated on its corresponding MATH test subsets; similarly,M+QGSM8K is fine-tuned on

the GSM8K training subset and evaluated on the GSM8K test subsets, and so on. dd We

also include the backbone model M itself as a baseline, which is used directly for test-

case inference without any adapter fine-tuning. This baseline is applied only to BBH and

MMLU datasets, as they contain in-context examples to guide the model’s output format.



All other baseline methods start from theM +Qbase checkpoint for further fine-tuning or

inference, and include:

• MoE Routing: This baseline implements layer-level routing with the same weights as

ELREA. Specifically, similar to Equation 5.3, the averaged linear layer adapter output

is given by

F(x) =
C∑
c=0

λcBcA
T
c x; λc =

wc∑C
c′=0wc′

; w0 ≜ wbase,A0 ≜ Abase,B0 ≜ Bbase.

(D.1)

Here, we omit the layer indicator i for simplicity. The matrices A and B are defined

as in subsection 5.2.1, and w represents the routing weight for each cluster as in Equa-

tion 5.9. Note that F(x) is the output of the LoRA MoE, which should be added to

the layer output from the backbone modelM(x) with a scaling factor of α/r = 4, as

mentioned in Appendix section D.2.

• MoE Merging: This baseline merges the expert network weights before processing

the input. Specifically, the averaged linear layer adapter weights become the final

weights for the model, i.e., A =
∑C

c=0 λcAc and B =
∑C

c=0 λcBc. Once merged,

the network behaves as a single-expert model, and the output is calculated as F(x) =

BATx.

• Mixture of LoRA Experts (MoLE, [192]): This baseline models each layer of trained

LoRAs as a distinct expert and incorporates a learnable gating function within each

layer, in contrast to the precomputed universal routing weights used in MoE Routing.

Using the same notation as in Equation D.1, the output of each MoLE layer is defined

as

F(x) =
C∑
c=0

λcBcA
T
c x; λc =

exp(wT
c x)∑C

c′=0 exp(w
T
c′x)

, (D.2)

where wc, a vector of the same dimensionality as x, represents the learnable gat-

ing weight of a single-output linear layer for each expert c. In our setup, the gating

outputs are expected to exhibit an imbalanced distribution, as shown in Figure 5.2.



Consequently, we do not include the gating balancing loss proposed by [192]. The

routing parameters are trained on the entire training set for 1 epoch at a learning rate

of 2× 10−5 with all other parameters frozen.

• LoRA Ensembles [177]: This baseline trains three adapters, Q1, Q2, and Q3, in-

dependently on the entire dataset using the same configuration as the base adapter

Qbase (subsection 5.3.1). During inference, four models (i.e., {M+Q(e)
base} and {M+

Qi}3i=1) are applied to the input sequence. The final prediction is then computed by

averaging their pre-activation logits and taking the ArgMax as the predicted next to-

ken. We do not match the number of ensemble models to the number of clusters, C,

in ELREA due to concerns about the training and evaluation costs.

• Self-Consistency [132]: This baseline performs 5 separate inference passes withM+

Qbase for each instance, using random token sampling with the last-layer SoftMax

activation temperature set to 1. The final answer is determined by majority voting

among the 5 predictions. In case of a tie, one of the tied answers is randomly selected

as the final prediction.

• Instruction Embedding: Instead of using the instruction gradients representation

from Equation 5.2, this baseline employs the sentence embedding of the instruction

text directly for training data clustering and test instance routing. Specifically, we use

the Sentence Transformers [126] Python package with the all-mpnet-base-v2

model checkpoint3 to encode the instruction text into a fixed-size vector, which is then

used for clustering and routing in the same way as the gradient features.

• Random Cluster: This baseline maintains the same number of clusters and cluster

sizes as ELREA but assigns cluster members randomly from the fine-tuning dataset

Dft. Specifically, Drand,c ⊂ Dft, with |Drand,c| = |Dc|, and Drand,c ∩ Drand,c′ = ∅ for

all c ̸= c′ ∈ {1, 2, . . . , C}. The corresponding adapters are fine-tuned on these ran-

domly assigned clusters and are uniformly weighted during inference, i.e., wrand,base =

3https://huggingface.co/sentence-transformers/all-mpnet-base-v2.

https://huggingface.co/sentence-transformers/all-mpnet-base-v2


wrand,1 = . . . = wrand,C = 1. This random assignment preserves the distribution

characteristics of Dft, positioning Random Cluster as an approximate deep ensemble

baseline with equivalent training effort to ELREA.

• Uniform Weights: This baseline assigns uniform weights to all clusters during infer-

ence, i.e., wbase = w1 = . . . = wC = 1.

D.5 Efficiency Analysis

Theoritical Analysis Theoretically, the computational overhead of ELREA compared to

usingM+Qbase arises from the following aspects:

1) the computation of the gradients of all training and test instructions; 2) clustering

the gradient features of the training data points and computing the weights of each test

data point on the clusters; 3) additional training steps to fit LoRA experts on the training

clusters; 4) additional computational resources required to perform the forward pass on all

LoRA experts for each test data point. In practice, step 2) only takes a few minutes with

our clustering setup (subsection 5.3.3 and subsection 5.3.4), which is negligible compared

to the entire training process and will be ignored in the following discussion.

If implemented properly, step 1) can also be integrated into the training and inference

process with relatively small overhead. With a naı̈ve implementation, step 1) approximately

equals the cost of training the model on the combination of training and test instructions

(without answers) for one epoch, whose overhead depends on the average length of the

instructions. For datasets such as OpenAssistant, MATH, GSM8k, and MathQA, whose

average instruction length is comparatively much shorter than the answer length (Table 5.1),

the overhead is minimal. In the worst-case scenario, step 1)’s overhead approximates the

cost of training the model on the combination of training and test for one epoch, which is

still acceptable for most fine-tuning datasets.

As the sum of our training cluster sizes equals the number of training data points, i.e.,



Table D.1: Efficiency comparison on a toy dataset. Time is in seconds; memory is in GiB.

Step
M+Qbase ELREA

Time Memory Time Memory

Fine-tuning base adapter Qbase on Dft (subsection 5.3.1) 246 15.49 246 15.49
Calculating training gradient features δ(xft, instr) (subsection 5.3.3) – – 68 24.76
Calculating test gradient features δtest (subsection 5.3.4) – – 14 24.76
Fine-tuning experts on clusters (subsection 5.3.3) – – 246 15.49

Fine-Tuning Total 246 – 574 –

Inference (subsection 5.3.4) 114 7.73 262 18.46

∑C
c=1 |Dc| = |Dft|, the additional training steps in step 3) take the same amount of time as

training the base adapterQbase (subsection 5.3.4) onDft, excluding CPU-disk I/O overhead,

which is generally less than one minute in our experiments.

The complexity of step 4), however, is harder to estimate as it varies drastically ac-

cording to the implementation. In our implementation, we choose to duplicate the input

instruction along the batch dimension by the number of experts (i.e., C + 1) and perform

a forward pass on the backbone and all experts simultaneously. This implementation has a

similar cost to using a (C + 1)× inference batch size with the base adapterM+Qbase.

Empirical Results To evaluate the efficiency of ELREA, we compared its computation

time with that of the baseline modelM +Qbase using a same set of hyper-parameters and

device configuration on a single NVIDIA A101 80G GPU, except for the following specific

parameters. We generate a toy dataset consisting of 2,000 training samples and 400 test

samples as a smaller-scale but more controllable evaluation setup. Each sample contains

60 random lorem-ipsum words in both the instruction and the answer (which accounts for

around 200 tokens each), matching the lengths in Dolly-15k (Table 5.1). We designate

C = 4 experts and set the LoRA ranks to r = 8. The model undergoes fine-tuning over

3 epochs, with batch sizes of 4 for both fine-tuning and inference. During inference, the

model consistently predict the next 20 tokens for all input instructions to ensure a fair

comparison.
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Figure D.1: Distribution of data sources and categories within each cluster for the MATH-
Combined and GLUR (general language understanding and reasoning) training sets at rank
r = 8. Cluster indices are shown along the rows, while columns represent data sources and
categories, formatted as “{source dataset}-{category}” for MATH-Combined
and “{source dataset}” for GLUR. The color intensity reflects the sample count,
with darker shades indicating higher counts. Each column is independently normalized,
meaning scales may differ across columns. Color gradients are slightly curved to improve
visibility for categories with fewer samples.

The results from our implementation, presented in Table D.1, indicate that the fine-

tuning time for ELREA was 574 seconds, which is approximately 2.3× that of the baseline

M+Qbase’s 246 seconds. Similarly, the inference time and memory consumption are about

2.3× and 2.4×, respectively. In contrast, a classic Deep Ensembles setup, where each

LoRA expert is trained independently from scratch on the entire dataset, would require 5×

the time of the baseline for both fine-tuning and inference. Thus, ELREA offers significant

efficiency and performance gains compared to this more traditional approach.

Further enhancements to ELREA’ efficiency could be achieved by reducing the num-

ber of experts or the LoRA ranks, or by constructing gradient features from only the top-k

Transformer blocks rather than the entire model. Moreover, we are exploring LoRA merg-

ing techniques in ongoing work to effectively combine similar expert adapters, thereby

further reducing inference costs.



D.6 Further Analysis on Data Clustering

To better understand the distribution of data across clusters, we analyzed the sources and

categories within each cluster from the MATH-Combined dataset, as visualized in Fig-

ure D.1. Here, “data source” refers to the individual datasets that comprise MATH-Combined

(i.e., MATH, GSM8k, SVAMP, or MathQA) and language understanding and reasoning

(i.e., CoT, Dolly-15k, Flan V2, and OpenAssistant), and “category” pertains to the finer-

grain labels within these datasets. Notably, GSM8k is categorized uniformly under a single

label “gsm8k” due to its lack of distinct category labels.

Analysis of Figure D.1 reveals distinct correlations between clusters and data sources.

For instance, in MATH-Combined, clusters 2, 3, and 5 predominantly contain samples

from MATH, whereas clusters 0, 1, 6, and 7 primarily feature contributions from MathQA.

This clustering also appears to group together tasks requiring similar mathematical skills;

for example, cluster 4 heavily includes SVAMP samples, which typically assess alge-

braic problem-solving capabilities, alongside significant portions of “Algebra” and “Pre-

Algebra” from the MATH dataset.

Additionally, within individual sources, clusters distinguish between finer categories

effectively; cluster 2 mainly focuses on Geometry and Probability, whereas cluster 3 is

concentrated on Algebra. These insights suggest that the data representations successfully

capture inherent structural differences, making the clustering both interpretable and mean-

ingful. Such characteristics motivates the design of ELREA and significantly improves its

efficacy.
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